

Maq niversidade de magn no -1 proving lo, renatocan}@lps.usp.br M. Silva, São Paulo, Multi **Renato Candido** kernel Brazil Adapti

P

Itering

with

S?

D

ecti

eronimo

Arenas-García,

uis.

Þ

Universidad

Carlos III

de Madr

arenas,

azpicueta

Introduction and Problem Form ulation

- Kernel adaptive filters (KAFs) are important tools to solve nonlinear problems
- The input vector $\mathbf{x}(n) \in \mathbb{R}^N$ is **projected into a high dimension feature** space \mathbb{F} as $\varphi(\mathbf{x}(n))$, where a standard linear adaptive filter is employed
- Kernel trick: $\varphi(\mathbf{x})^T \varphi(\mathbf{x}') = \kappa(\mathbf{x}, \mathbf{x}')$, where $\kappa(\cdot, \mathbf{x}')$ \cdot) is a Me

where e(i) = d(i)

y(i) and μ is

a step size

y(n)

 $=\varphi(\mathbf{x}(n))^T \mathbf{\Omega}(n)$

 $\mu e(i)\kappa(\mathbf{x}(n),\mathbf{x})$

(i)

convex combination is

able to

select the best component filter and may

outperform SI-KLMS and MI-KLMS

High computational burden

KAFs

Select an appropriate kernel

U

roposed

 σ_1

9

 σ_2 ?

Nonlinear System

and memory

55

Problems

 $\mathcal{C}(n)$

٢

9

 $\kappa(\mathbf{X})$

×_

exp

 2σ

Ň

X

 $\mathbf{x}(n)$

F

 $\Omega_1(n$

 $\varphi_1(\mathbf{x}(n))$

rcer's kernel

output is a convex combination of the outputs of two KLMS filters running in parallel

- MI-KLMS: multiple-input multikernel LMS, in which L KLMS filters in parallel are

- SI-KLMS: single-input multikernel LMS, combination of kernels

where the kernel function is

മ

convex

Universidad Carlos III de Madrid

 $lpha_\ell(n)$ of its updating has to be restricted to മ

We propose a scheme to improve the selection of kernel filters in MI-KLMS, by multiplying the output of each kernel filter by an adaptive biasing factor in [0, 1]

ESCOLA POLITÉCNICA

If the parameters of one kernel component are poorly adjusted, the

 $\lambda_\ell(n)$ size $\mathrm{sgm}[\alpha_\ell(n$ and 1) + $\lambda_{\ell}(n)$, we adapt an auxiliary parameter α_{ℓ} : $p_\ell(n)$ ugh a sigmoidal function $rac{d}{p_\ell(n)} e(n) y_\ell(n) \lambda_\ell(n) [1-\lambda_\ell(n)]$ range of [-1)] = $eta p_\ell(n$ $[\alpha^+, \alpha^+]$ to avoid the paralysis ⊢--+ $e^{-\alpha(n-\alpha)}$ \vdash 1) + \bigcirc $eta)y_\ell^2(n)$, with

 \bigcirc $\lambda_\ell(n)$ \mathcal{O} and $lpha_\ell(n)$

where $rac{\mu_{lpha_\ell}}{<1}$ adapting directly S. $lpha_\ell(n) = lpha_\ell(n-$ മ are related thro step

Instead of

- We combination with a virtual kernel whose output is always zero, i.e.,
- or deactivating the permits to weight output of
- R-MI-KLMS

- \bullet is related to the error employed to

- - output

- filters, in which the global

- as

SW

MI-KLMS

SI-KLMS

Approaches

Multikernel

 \mathbb{R}^N

 \mathbb{F}_2

 $\mathbf{\Omega}_{\mathbf{2}}(n$

 $arphi_2(\mathbf{x}(n))$

}@tsc.uc3m.es Scheme \triangleright D jd, zpicueta-Ruiz Spain las

Robust MI-KLMS (R-MI-KLMS -KLMS) with L = 2 K/system identification with L $e_2(n)=d(n)$ -= 2 KAFs applied to nonlinear $[y_2(n)+\lambda_1(n)y_1(n)]$

An important difference between the MI-KLMS scheme and our proposal adapt each kernel

unnecessary kernels in the the output of each kernel activating global filter

reinterpret the output of each branch of R-MI-KLMS as a convex

 $\sum_{\ell=1} \lambda_\ell(n) y_\ell(n) + [1 - \lambda_\ell(n)] \cdot 0$

S mulati 00 Results

middle linear The schemes were applied to nonlinear predic the the ھ ا multikernel QKLMS Gaussian kernel function and L = of the system simulation, algorithm due identification schemes, assuming the ¥e to its inherent advantages with consider an parameters: abrupt 2 filters

Algorithm	Parameters
QKLMS ₁	$\mu_1 = 0.05$, σ_1 , $\varepsilon_1 = 0.05$
QKLMS ₂	$\mu_2 = 0.5, \sigma_2, \varepsilon_2 = 0.5$
CC-QKLMS	$\alpha^+=4,\ \beta=0.9,\ \mu_{\alpha}$
SI-QKLMS ₁	$\mu = 0.05, \ \beta_1 = \beta_2 = 0.5, \ \sigma_1, \ \sigma_2, \ \varepsilon = 0.05$
SI-QKLMS ₂	$\mu = 0.5, \ \beta_1 = \beta_2 = 0.5, \ \sigma_1, \ \sigma_2, \ \varepsilon = 0.5$
MI-QKLMS	$\mu_1 = 0.05, \ \mu_2 = 0.5, \ \sigma_1, \ \sigma_2, \ \varepsilon_1 = 0.05, \ \varepsilon_2 = 0.5, \ $
R-MI-QKLMS	R-MI-QKLMS $\mu_1 = 0.05, \ \mu_2 = 0.5, \ \sigma_1, \ \sigma_2, \ \varepsilon_1 = 0.05, \ \varepsilon_2 = 0.5, \ \sigma_1, \ \sigma_2, \ \varepsilon_1 = 0.05, \ \varepsilon_2 = 0.5, \ \varepsilon_2 = 0.5, \ \varepsilon_2 = 0.5, \ \varepsilon_1 = 0.05, \ \varepsilon_2 = 0.5, \$

schemes for th SNRs	other multikernel schemes fo especially for low SNRs		R-MI-QKLMS outperforms considered range of SNR.	R-MI-QF
1.6	0.5	0.2	0	1 5
N. 8	1.6	<u>0.</u> 5	0.1	10
З. С	2.2	0.3	0.1	ഗ
5 N	4.5	0.4	0.4	0
8.4	6 <u>.</u> 3	<u>О</u> .5	0.6	 ഗ
9.9	8 <u>.</u> 5	0.9	1.4	-10
13.4	11.4	3.2	<u>ယ</u> ယ	 15
16.6	15 <u>.</u> 3	6 <u>.</u> 8	6.7	-20
20.7	23.9	9.4	10.5	-25
MI-QKLMS	CORLESSING SI-QKLMS SI-QKLMS MI-QKLMS	SI-QKLMS ₁	CC-QKLMS	SNR (
tem	EMSE (dB) for 2 nd system		steady-state	
mes in terms	Gain of R-MI-QKLMS in relation to other schemes in term	in relation to	-MI-QKLMS	ain of R-

Settings: Nonlinear σ_1 Sy stem σ_2 \bigcirc . identificat J μ_{α} μ_{lpha_1} μ_{lpha_2} ion

For MI-QKLMS, 1200 $\leq n$ which is 5000, σ_2 avoided 100by degrades **R-MI-QKLMS** the performance Of

- that Of the monokernel QKLMS₁

C C

QKLMS

follows

QKLMS₁

100 does not lead to

⊢

 \bigcirc

Q

Nonlinear system d

 \mathbf{N}

- the first system but for performs SI-QKLMS₂
- **MI-QKLMS** presents മ σ
- **R-MI-QKLMS** unnecessary kernels <u>v</u>. able 6

Conclusions

ω

The proposed scheme

- presents a computational QKLMS and
- tings can outperform other m SNR is of one **NO** Q more kernels

References

- Ē
- M. Yukawa, "Multikernel adaptive filtering,"
- G. R. G Lanckriet, N. Cristianini, P. Bartlett, with semidefinite programming," *Journal of*

the second system, SI-QKLMS₁ out-

oor performance <u>O</u>f

minimize the degrading effects

cost slightly higher than that of MI-

ultikernel solutions when the setare not appropriate and/or the

- W. Gao, C. Richard, J. C. M. Bermudez, and J. Huang, "Convex combinations of kernel adaptive filters," in *Proc. of IEEE MLSP*, Sep. 2014

B. Chen, S. Zhao, P. Zhu, and J. C. Principe, "Quantized kernel least mean square algorithm," *Transactions on Neural Networks and Learning Systems*, vol. 23, pp. 22–32, Jan 2012 IEEE TSP, vol. 60, no. 9, pp. 4672–4682, Sep. 2012 IEEE

- F. A. Tobar, S. Y. Kung, and D. P. Mandic, "Multikernel least mean square algorithm," *IEEE Transactions on Neural Networks and Learning Systems*, vol. 25, no. 2, pp. 265–277, Feb. 2014

, L. El Ghaoui, and M. I. Jordan, "Learning the kernel matrix *Machine Learning Research*, vol. 5, pp. 27–72, 2004.

M. Lazaro-Gredilla, L. A. Azpicueta-Ruiz, A. R. Figueiras-Vidal, and J. Arenas-Garcia, "Adaptively bias-ing the weights of adaptive filters," *IEEE TSP*, vol. 58, pp. 3890–3895, Jul. 2010