Introduction and Problem Formulation

e Kernel adaptive filters (KAFs) are important tools to solve nonlinear
problems

e The input vector x(n) € R is projected into a high dimension feature
space FF as ¢(x(n)), where a standard linear adaptive filter is employed

e Kernel trick: o(x)"o(x') = k(x,x’), where (-, -) is a Mercer’s kernel
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KLMS applied for nonlinear system identification, where v(n) is a
measurement noise

e The filter output of the kernel least-mean-squares (KLMS) algorithm is
computed as

where e(i) = d(¢) — y(¢) and u is a step size
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- O—A._|_<_m" Quantized KLMS, which is similar to the sparsified KLMS with novelty criterion
dis(x(n),C(n)) = min x(n) ~x(c))|

If dis(x(n), C(n)) < e, keep the dictionary unchanged and update a,- as
aj(n) = aj(n —1) + pe(n),

where

jr=arg min - flx(n) —x(c)|

Otherwise, include x(n) and ay; (,)4+1(n) = pne(n) to the dictionary

- CC-KLMS: convex combination of two KLMS filters, in which the global

output is a convex combination of the outputs of two KLMS filters running in parallel

- MI-KLMS: multiple-input multikernel LMS, in which L KLMS filters in parallel are

adapted using a single error signal

- SI-KLMS: single-input multikernel LMS, where the kernel function is a convex
combination of kernels

e MI-KLMS generally outperforms SI-KLMS and may outperform the con-
vex combination of two KLMS filters

o If the parameters of one kernel component are poorly adjusted, the
convex combination is able to select the best component filter and may
outperform SI-KLMS and MI-KLMS

We propose a scheme to improve the selection of kernel filters in MI-
KLMS, by multiplying the output of each kernel filter by an adaptive biasing
factor in |0, 1]
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Proposed Scheme
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ex(n) =d(n) — [y2(n) + Ai(n)yi(n)]
Robust MI-KLMS (R-MI-KLMS) with L = 2 KAFs applied to nonlinear
system identification

e An important difference between the MI-KLMS scheme and our proposal
Is related to the error employed to adapt each kernel

e R-MI-KLMS permits to weight the output of each kernel activating
or deactivating the output of unnecessary kernels in the global filter
output

e We reinterpret the output of each branch of R-MI-KLMS as a convex
combination with a virtual kernel whose output is always zero, i.e.,

e Instead of adapting directly \/(n), we adapt an auxiliary parameter «:

Hay
pe(n)

ay(n) = ay(n — 1) - e(n)ye(n)Ae(n)[1 — Ae(n))

where p,, is a step size and pi(n) = Bpin — 1) + (1 — B)y;(n), with
K p <1

e \/(n) and ay(n) are related through a sigmoidal function

1

vé?gv — m@gﬁD&Ai | Fz — 1 1+ e—aln—1)

e oy(n) has to be restricted to a range of [—a™, a™| to avoid the paralysis
of its updating
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Simulation Results

In all multikernel schemes, we consider

-the QKLMS algorith

m due to its inherent advantages

-the Gaussian kernel function and L = 2 filters

[ he schemes were applied to nonlinear prediction and non-

linear system Iidentification with an abrupt change in the

middle of the simulation, assuming the parameters:
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Nonlinear prediction 1)
Settings: 0,=0.1, o9=1, tta = fta, = fla, = 1.5

0
2 —20
2
N
= —40 -
& QKLMS, ~@®- SI-QKLMS;
60 - -V~ CC-QKLMS _60 - B SI-QKLMS,
@ MI-QKLMS
097 & R-MLOQKLMS
B —20- P
- 0
U
= —40 -
= 8- Mi(n)
—60 - 0 - = Xa2(n)
0.0 2.9 5.0 7.0 10.0 0.0 2.5 5.0 7.0 10.0
iterations (x10°) iterations (x10°)

e CC-QKLMS performs as its best component filter
e SI-QKLMS; outperforms SI-QKLMS,
e MI-QKLMS and its robust version present the same perfor-

mance and outperform other multiple kernel solutions

Nonlinear prediction
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¢ 0, = 100 does not lead to good results for a monokernel filter
e CC-QKLMS follows QKLMS;
e SI-QKLMS; scheme presents a lower convergence rate than

that of

the monokernel QKLMS;

e For 1200 < n < 5000, oo = 100 degrades the performance of
MI-QKLMS, which is avoided by R-MI-QKLMS
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Settings: 01 =1, 0o = 0.1, tio= b, = fta,=0.1
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Gain of R-MI-QKLMS in relation to other schemes in terms of
steady-state EMSE (dB) for 2" system

SNR CC-QKLMS SI-QKLMS,; SI-QKLMS; MI-QKLMS
—25 10.5 9.4 23.9 20.7
—20 6.7 6.8 15.3 16.6
—15 3.3 3.2 11.4 13.4
—10 1.4 0.9 8.5 9.9
-5 0.6 0.5 6.3 8.4
0 0.4 0.4 4.5 5.2
5 0.1 0.3 2.2 3.5
10 0.1 0.5 1.6 2.8
15 0 0.2 0.5 1.6

o R-MI-QKLMS outperforms other multikernel schemes for the

considered range of SNR, especially for low SNI
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e CC-QKLMS performs as the best component filter

o S|-QKLMS; outperforms SI-QKLMS; in the identification of
the first system but for the second system, SI-QKLMS; out-
performs SI-QKLMS;

e MI-QKLMS presents a poor performance

e R-MI-QKLMS is able to minimize the degrading effects of
unnecessary kernels
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Conclusions

The proposed scheme

- presents a computational cost slightly higher than that of MI-
QKLMS and

- cah outperform other multikernel solutions when the set-
tings of one or more kernels are not appropriate and/or the
SNR is low
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