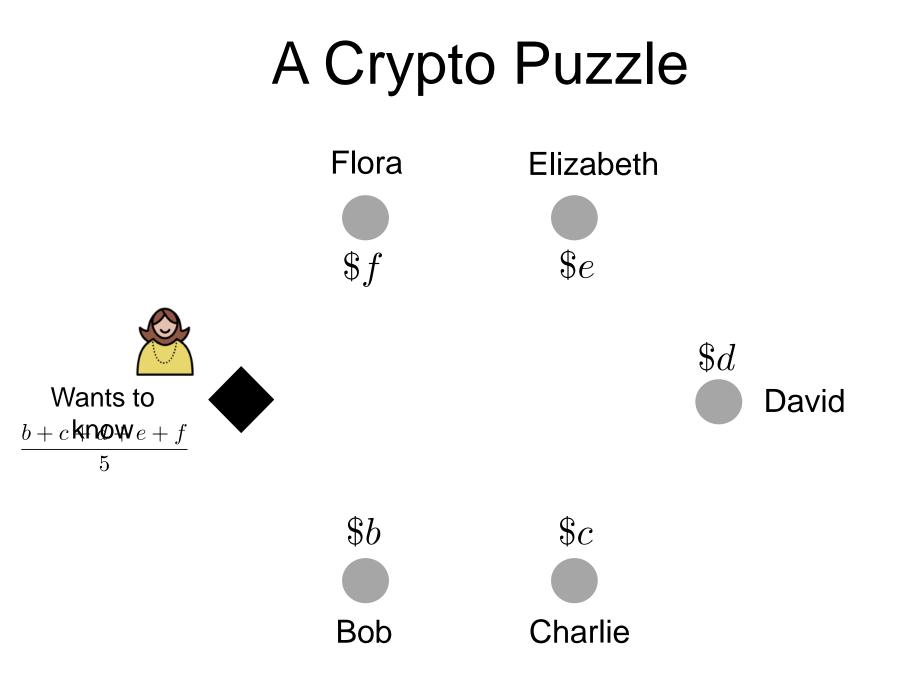
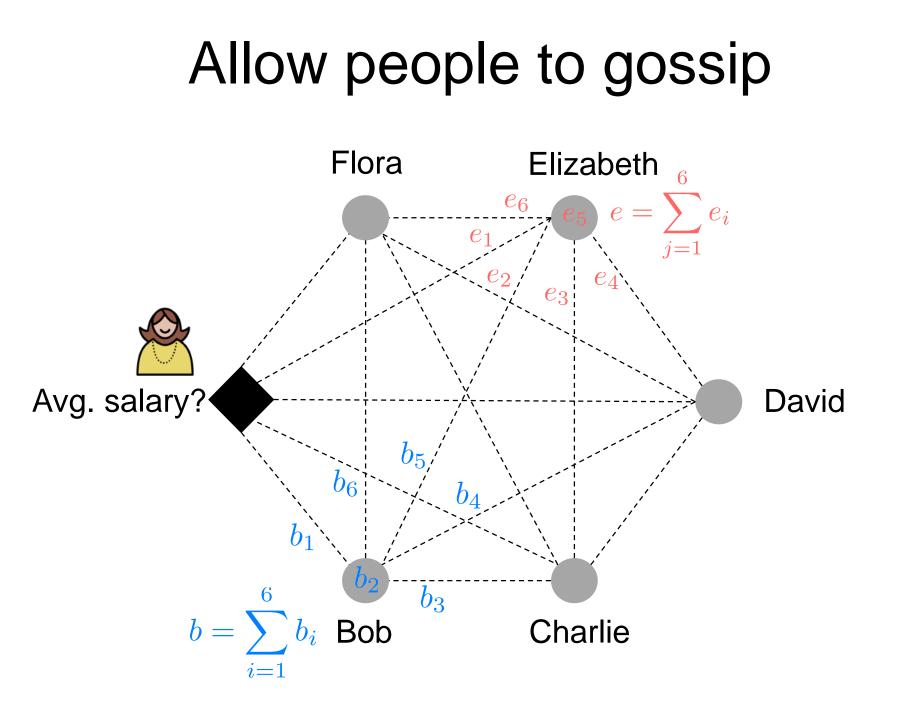
Privacy, Efficiency & Fault Tolerance in Aggregate Computations on Massive Star Networks

Rane, Freudiger, Brito, Uzun

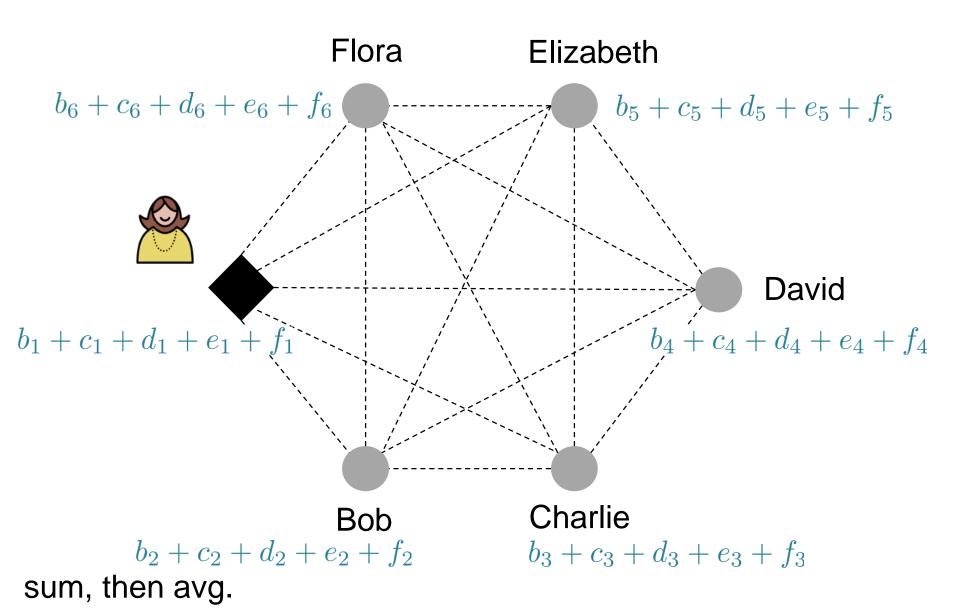
parc | WIFS | 2015



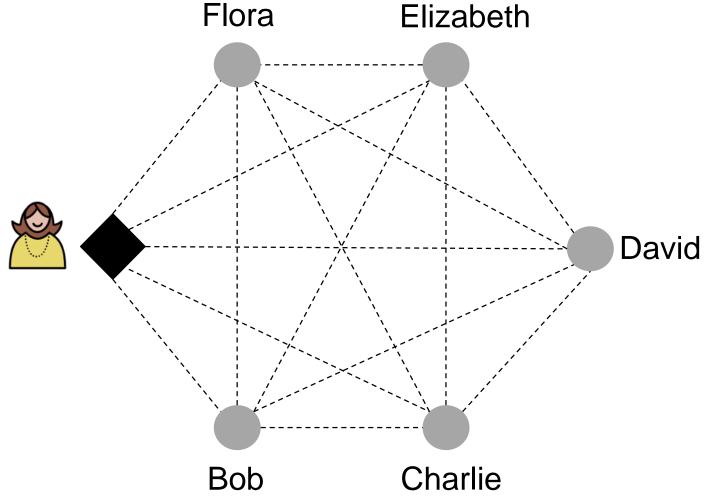
http://www.cartalk.com/content/coney-island-crab-cake-company



Additive Secret Sharing



What if people can only talk to Alice?



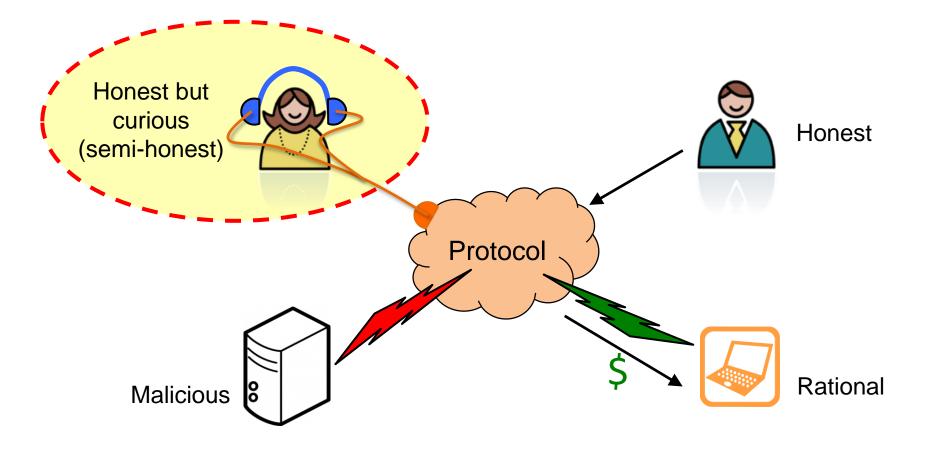
Applications

- Electronic voting
- Smart power grids
- Studying browsing behavior
- IoT analytics
 - Smart homes
 - Wearable devices
- Social Networks
- ... & many more

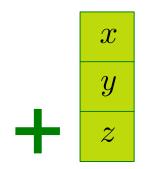
Existing aggregation solutions

[Erkin, Troncoso-Pastoriza, Lagendijk, Gonzalez, 2012]

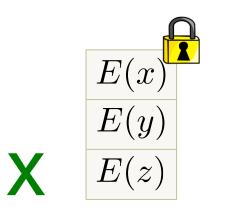
Review: Semi-honest Adversary



Review: Homomorphic Encryption

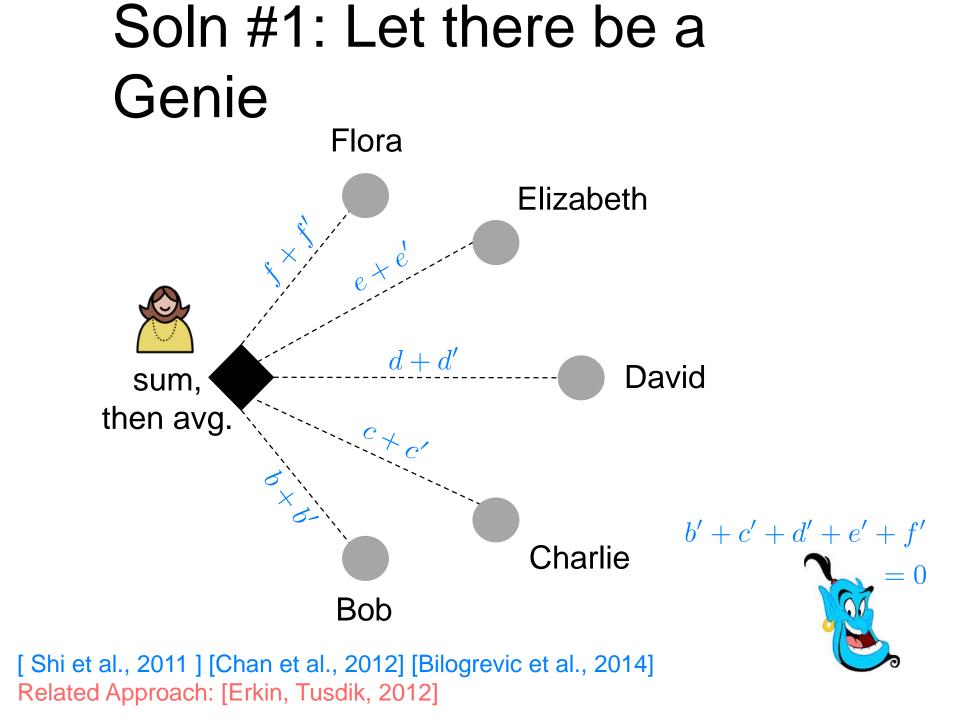


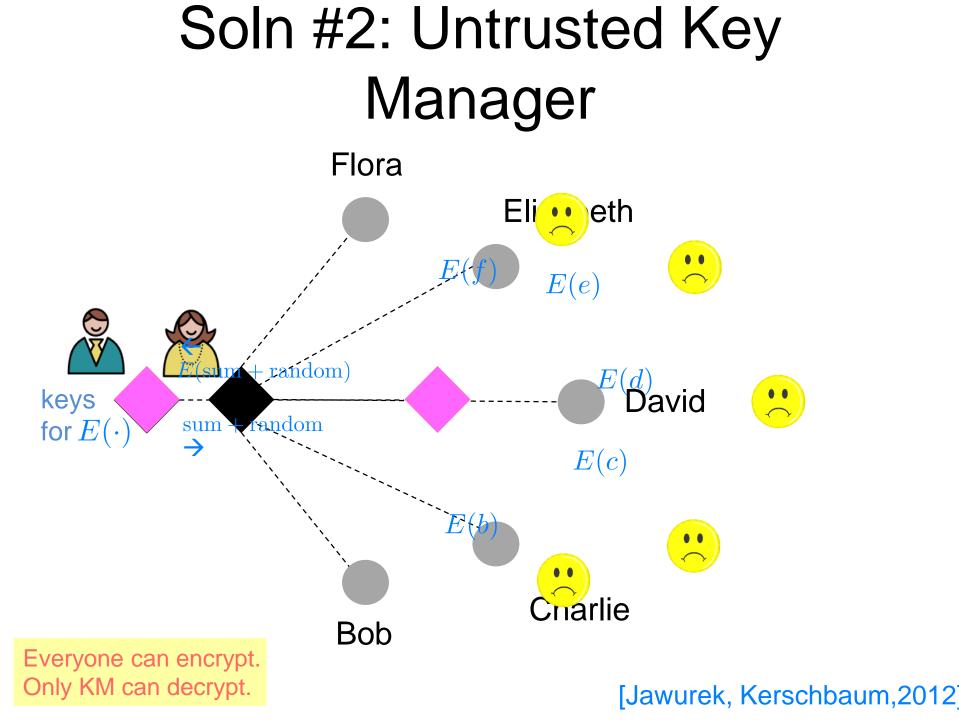
$$S = x + y + z$$

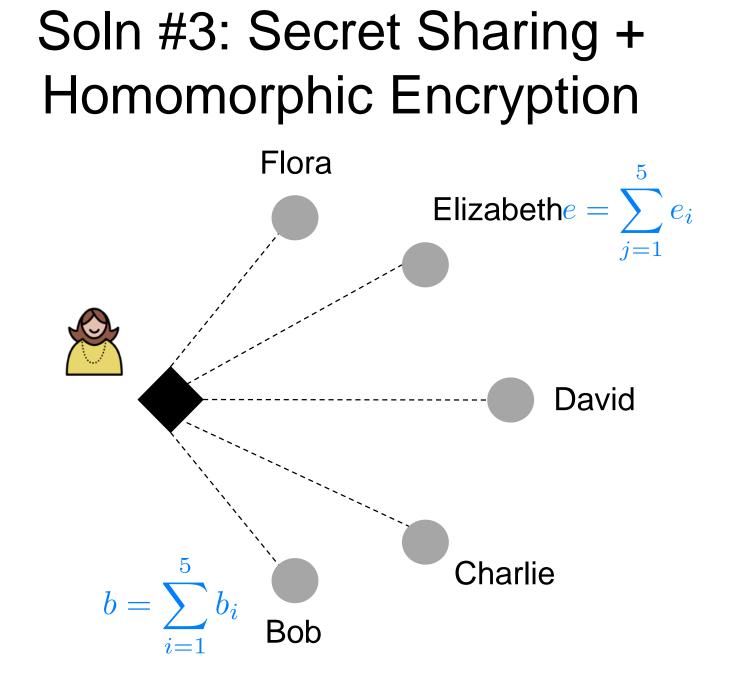


$$E(S) = E(x)E(y)E(z)$$
$$= E(x + y + z)$$

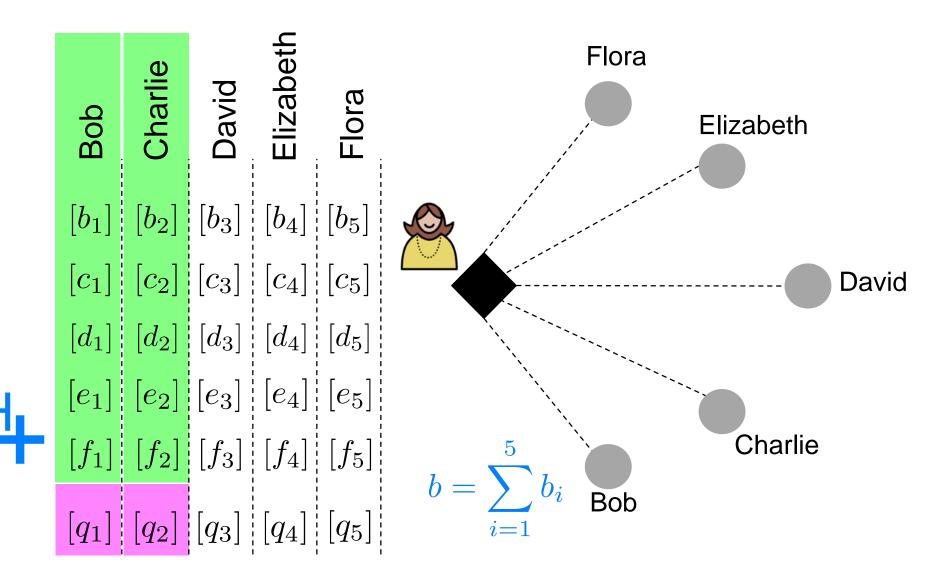
[Paillier, 1999] [Damgard-Jurik, 2001] [El Gamal, 1985] [Gentry, 20







Assume, everyone knows everyone's public encryption keys, so David can encrypt with Bob's public key, etc.



Book-keeping with additive shares

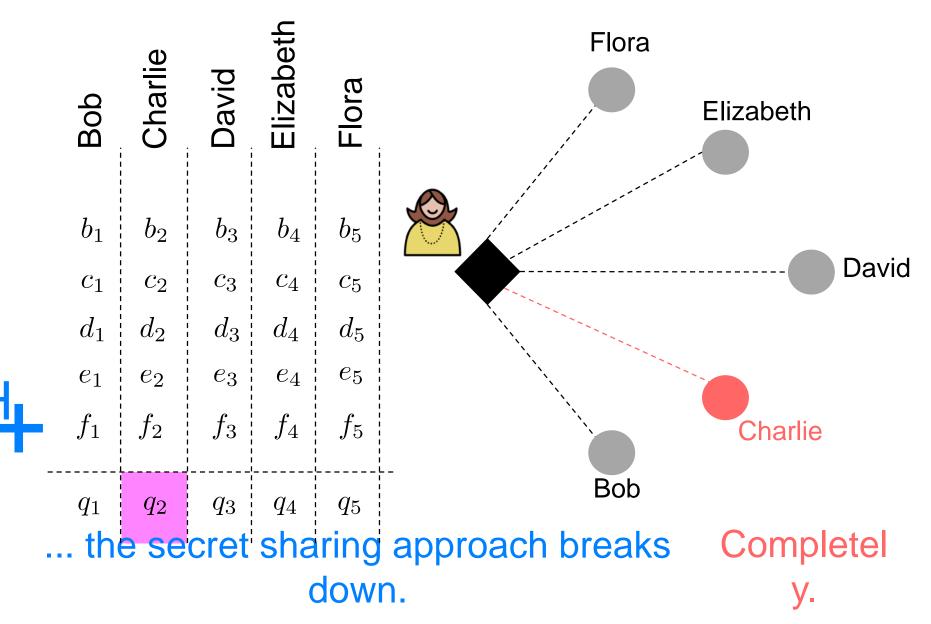
Alice requests decryptions q_1, q_2, q_3, q_4, q_5 from parties.

By construction, $q_1 + q_2 + q_3 + q_4 + q_5$ = b + c + d + e + f done!

Collusion resistance \rightarrow To compromise Bob, <u>all</u> other parties are forced to collude.

[Garcia, Jacobs, 2011]

Drawback: Not fault tolerant



Shamir Secret Sharing [1979]

$$b(x) = b + b_1 x + b_2 x^2 + b_3 x^3 \mod \beta$$

Coefficients chosen at random from 0 to β - 1 Observe, b(0) = b

Bob evaluates his polynomial at x = 1, 2, 3, 4, 5

$$e(x) = e + e_1 x + e_2 x^2 + e_3 x^3 \mod \beta$$

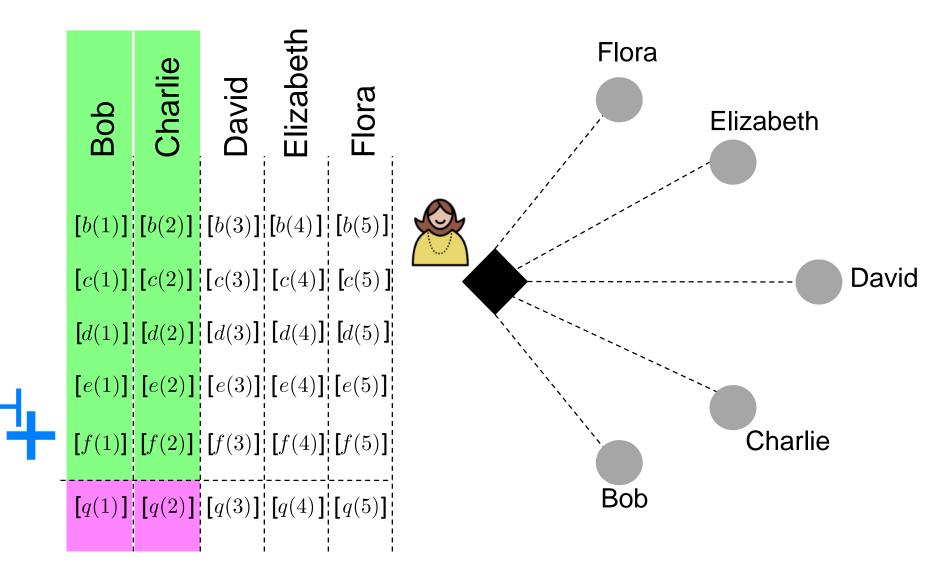
Elizabeth

Bob

Coefficients chosen at random from 0 to β - 1 Again, e(0) = e

She evaluates her polynomial at x = 1, 2, 3, 4, 5

Assume, everyone knows everyone's public encryption keys, so David can encrypt with Bob's public key, etc.



Alice requests decryptions of q(1) q(2) q(3) q(4) q(5)

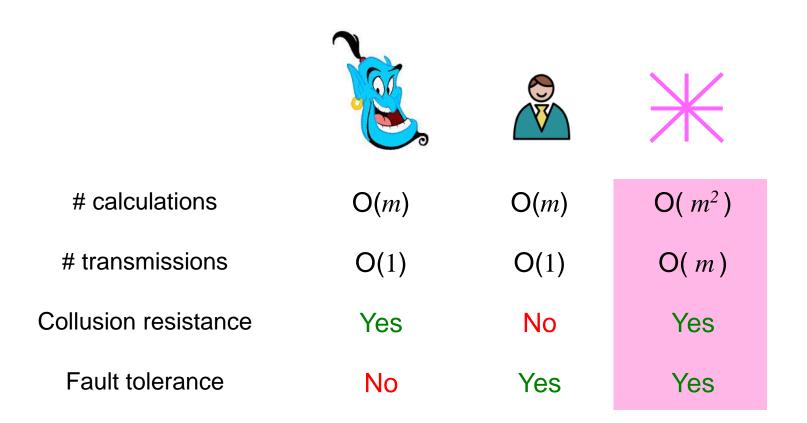
Evaluations of
$$q(x) = q + q_1 x + q_2 x^2 + q_3 x^3$$

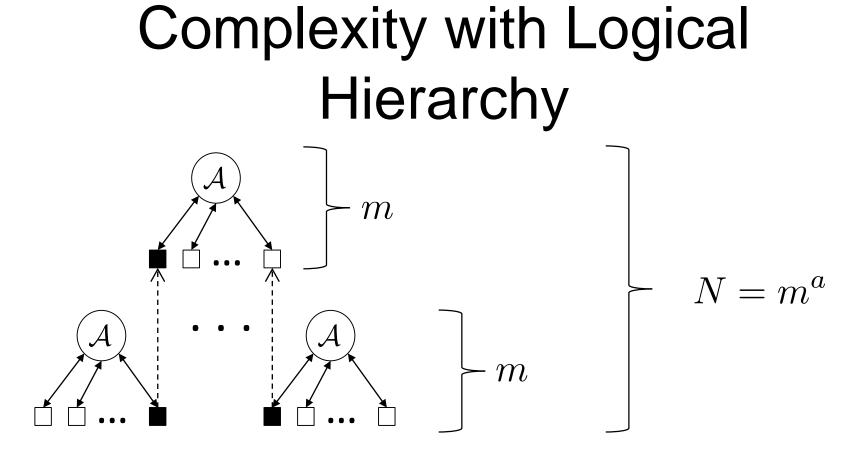
where, q = b + c + d + e + f

Putting x = 1, 2, ..., 5, Alice has 5 equations in 4 unknowns. From any 4 equations, she can obtain q and divide by 5. Done!

Fault tolerance \rightarrow Any <u>one</u> person can leave after distributing the polynomial secrets. Can generalize this.

Complexity at Aggregator

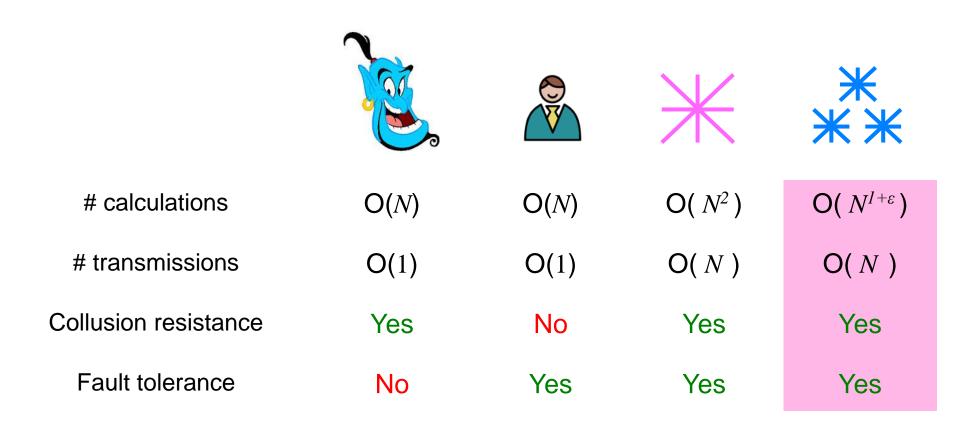




No. of cohorts = $m^{a-1} + m^{a-2} + \ldots + m^2 + m + 1 = \frac{m^a - 1}{m - 1}$

Effective Complexity =
$$O\left(m^2 \frac{m^a - 1}{m - 1}\right) \equiv O(Nm) \equiv O\left(N^{1 + \frac{1}{a}}\right)$$

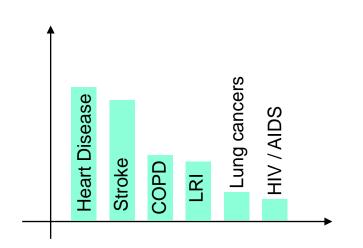
Complexity

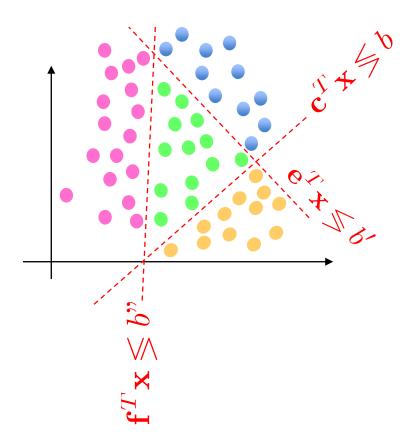


More interesting computations

Histograms

Linear Classifiers





Summary

- Aggregation under constraints on privacy, network topology and fault tolerance for strict stat topology²) needs
- With hierarchical approach, can reduce the overhead $doW(Mo^{1+\epsilon})$
- Tradeoffs among collusion resistance and fault tolerance.
- Future work: What other expressive computations are (efficiently) possible in star networks?