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Introduction

Task: Sound event detection — detect the (type,
starting time, ending time) of each occurrence
Conventional solution: Recurrent neural networks
Problems:
1. Polyphony — multiple events may overlap
2. Inexact timing — labeling the starting and
ending times of each event can be tedious,
and these boundaries can be ill-defined
Proposed solution:
« Detect the sequence of event onsets and
offsets with CTC, and expect to generate peaks
near the true locations of event boundaries

System Archltectu re

CTC output
(Interpretation:
dog barks while
car passes by)

Bidirectional LSTM
(400 x 2)

Acoustic features

Acoustic signal

CTC vocabulary: {start, end} for each event + {blank}
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Training the CTC-RNN

Corpus:
« Noiseme corpus [1], expanded
« 464 recordings, 9.6 hrs (60% train, 40% test)
« 48 sound events, merged to 17
« Average polyphony: 1.44
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Feature extraction:
« MFCC, Fo, etc extracted with OpenSMILE,
100 frames [ second
« 6,669-dim statistics over 2-second windows,
10 windows / second
« Reduced to 50 dims with PCA

Training method:
« Obijective: Per-frame negative log-likelihood
« Batch size: 5 segments of soo frames
« Optimizer: SGD, Nesterov moment = 0.9
« Learning rate: 0.3 until 200 epochs; decay by
0.99 until oo epochs

Tricks for training:
o Pre-training with a framewise event detector
(improved from [2], frame accuracy 55.5%)
« Gradient clipping at 0.001
« Alignment hinting: Each token must occur
within «frames of the ground truth
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Example of alignment hinting:
k=1, only thick circles and arrows are allowed
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Qualitative Analysis

On training data:
« The sequence of event boundaries can be
almost perfectly recovered
« But the boundaries tend to cluster together
 Alignment hinting makes the peaks fall in
the right places

(a) Training recording, no hinting
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(b) Training recording, hinting k =5
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Legend:

« Thick horizontal lines: ground truth events

 Shades: Predicted token probabilities
(above line: start; below line: end)

 Crosses: Framewise argmax of token prob.

On test data:
« Speech segments are well detected
« Notably, speech and non-English speech
can be distinguished
« Some short events (e.g. pulse) are detected
« Many long events are missed

(c) Testing recording 1, hinting k =5
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(d) Testing recording 2, hintingk =5
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Quantitative Evaluation

Decoding and evaluation:
» Best path decoding (no prefix search)
« Evaluation metric: Token error rate (TER)

Observations:
« Gradient clipping avoids surges and allows a
larger learning rate
 Alignment hinting speeds up convergence
o Overfitting (training TER 13%, test 81%)
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Conclusion

CTC network for sound event detection:
 Relaxes the need for exact annotation of
event boundaries
« Can detect short, transient sound events,
which are conventionally hard
Lots of problems to solve:
« Poor generalization to test data
« Alignment hinting necessary
Solutions?
« No data is like more data
« Hand-labeling, data augmentation
« Regularization
Prospect: Use SoundNet [3] as a feature extractor
 Transfer learning: predict visual objects and
scenes from audio
. Big data: trained on 1 year of Flickr videos
« Going deep: 5 layers of convolution




