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Compressive Spectral Imaging (CSI)

Objective  Coded Band-pass Relay Amici
Lens A.perture Filter Lens Prism

system

Coded Aperture Snapshot Spectral Imaging (CASSI)

Compressive Spectral Imaging (CSI): recovering the full spatial and spectral
information of a scene from undersampled random projections acquired by a
compressive spectral imager such as CASSI.
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Compressive Sensing Measurements

Sensing matrix

y=®x+e

where ® is fixed and e is an additive Gaussian noise, i.e., e ~ N(0,02)

Iband 2™band 3<band 4" band

» Diagonal patterns related

st
to the coded aperture 1¥Shot
> Shifted patterns due to the
prism effect
» Possible acquisition of 214 Shot

multiple snapshots
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Compressive Sensing Measurements

Sparse representation of the image

x=vo

where W is constructed from predefined atoms

e.g., using the wavelet transform

2 4 6
Ordered pixels <ot

Problem: how to estimate the unknown image @ from compressed
measurements y = ®x + e?

T3 3 4 5 &
Ordered wavelet coefficients 1g¢
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Fusion as an Inverse Problem

Data fidelity term

1 1
5 Iy —@al} = 5 ly - H6|;

Sparse regularization

e1(0) = |16l

Spatial regularization

¢2(0) = ||(B - 1)¥0)|;

where B is an appropriate weighting matrix (low-pass filter)

Conclusion
1
argmin | o ly — HO|| + 7¢1(0) + \p2(8)
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Bayesian LASSO!

Observation model

y=HO+n

where 0 is sparse and n ~ N(0,02)

Optimization problem

. 1 2
argmeln {EHZI — Ho|| +7'||0||1]

Problem: how to adjust the regularization parameter 77

Equivalent problem

1 2
arg max {exp (—mﬂy — HO|| > exp(—7'||0||1)}

1 T, Park and G. Casella, " The Bayesian Lasso,” Journal of the American Statistical Association, vol. 103, no.
482, pp. 681-686, 2008.
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Bayesian LASSO
Observation model

y=HO+n, sparsed,n~N(0,o-Ix)

Bayesian formulation

» Gaussian likelihood
1
(916) = N (EO. 213 x exp (5= 1y — 6]

» Independent Laplacian priors

f|r) = Hexp —76i]) = exp(—7]|0]|1)

i=1

» Posterior

1
101) o exp (= 50z ly — HOIP ) exp—rllo]1)
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Hierarchical Bayesian Model

» Gaussian likelihood
2 2 1 2
1(910.0%) = N(H0,521) x oxp 5|1y — HO*

» Independent Laplacian priors

f|r) = Hexp —700:|) = exp(—7]|0]|1)

i=1

» Joint noise variance and hyperparameter prior
2
m(T,00)

» Posterior
1
6.3 7ly) o exp (=0 ly = HOI ) exp(—rlloln(r. o)

How can we estimate 0, 02,77
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The Bayesian LASSO

Posterior

1
10,03 7ly) o< exp (50 lly — HOIP ) exp(—r0]l)(r, )

Completion

» Scale mixture of a Gaussians distributions

62 2
—Tlosl — T2 —e 2 ds

Te LT
2¢ vV 271'3 2

» Hierarchical representation

y ~ N(y;HO,021y)

0|U,21,s§, ...,312, ~ N(6; Op,aiDp), D, = diag(s?,...,

d T2 7'2.5‘?
81y SolT o~ H ?67 > |, w(r)~1/7

Jj=1

n(o2) ~ 1/op (Jeffreys prior)

)

)
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Generalized Inverse Gaussian Distribution

n(a) = (%) Yk (Vab) % exp {—% (g + amﬂ Lot (2)

where K/ is a modified Bessel function, hence

Ee e

)"

\ffe"p Vab).

can be used to demonstrate that the Laplace distribution is a scale mixture of
Gaussian distributions.
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Gibbs Sampler

Algorithm 1 Gibbs sampler

1: Initialize 7 and o2
2: Sample 6 from its prior distribution
3: repeat

4:

10:

© LN o

for i =1 to p do

Sample s? from f(s?]0:,02,7)
end for
Sample 8 from f(8|y,c2,s%)
Sample 7 from f()\|0)
Sample a from f(a|6?)
Sample o2 from f(o2|y, 0,48?%)

11: until convergence
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Include Spatial Regularization into Bayesian LASSO

Optimization problem

[
arg min @Hy*HGW +7(18][1 + Al|(B — I)®6)|”

0.4
0.35
0.3
0.25
0.2
0.15
0.1
0.05
0
(@) (b)

(a) Zero mean Gaussian filter of size 3 X 3 with o = 0.6, (b) matrix B created by
using the Gaussian filter of (a).
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Include Spatial Regularization into the Bayesian LASSO

Bayesian formulation

» Equivalent problem
1
arg myx [exp (—ﬁny ~ Ho|? —r||e||1) exp(— (B — D)T6]*)

» Our proposal
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Gibbs Sampler

Algorithm 2 Gibbs sampler

Initialize a, o2 and \
Sample 6 from its prior distribution
repeat

fori=1to N do

Sample 67 from f(67|6;,02,a)

end for

Sample 8 from f(8|y, 02,82, \)

Sample A from f(\|6)

Sample a from f(a|6?)

Sample o2 from f(o2|y, 0,8?%)
until convergence
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Conditional Distributions of f(c2,8,a,\,6?|y)

Full conditionals f(67|0;,02,a), f

f®ly,07,8%,X), £(A|8), f(als?) and

f(o2]y, 8,82) associated with the posterior distribution of interest.

62

o76(10 %)

n

N(EEuz) 5 = L (H H+ A~

H+ac!

2
g(N];/IL_Fa)\ (B— I)‘I’OH _|_,3>\)

a

g(nmL, B

on

7g( MM Ly - HO|P + 3 %)

Sampling @ using a perturbation-optimization algorithm?

2F. Orieux, O. Feron and J. F. Giovannelli,

Inverse Problems,”

" Sampling High-Dimensional Gaussian Distributions for General Linear
IEEE Signal Processing Letters, vol. 19, no. 5, pp. 251-254, May 2012.
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Qualitative Results

30.1 20.79°dB
Seventh spectral band of the image: (Left) Ground truth. Reconstruction results for:
(top center) the proposed method, (bottom center) SpaRSA3 Smooth, (top right)
Bayesian LASSO and (bottom right) SpaRSA LASSO.

35 . Wright, R. D. Nowak, and M. A. T. Figueiredo, "Sparse reconstruction by separable approximation,” |IEEE
Transactions on Signal Processing, vol. 57, no. 7, pp. 2479—2493, July 2009.
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(= Proposed method

- * - Proposed method +2SD
(% - Proposed method —2SD

| [~ Bayesian LASSO

-©- Bayesian LASSO +2SD

-©- Bayesian LASSO —2SD

Intensity value

(——Reference
\ [~==SpaRSA LASSO
-10 - SpaRSA LASSO

Figure: Spectral signature for pixel #(20, 33).
> The estimates obtained using the smoothing term are closer to the ground truth.

» Bayesian methods provide confidence measures for the estimates
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Conclusions and Future Work

Conclusions

» Hierarchical Bayesian model solving the compressive spectral imaging
problem by promoting the image to be sparse in a given basis and smooth
in the spatial domain.

> A Gibbs sampler sampling the full image in a single step using a
perturbation optimization algorithm

> Including a spatial smoothing term can improve the PSNR of the
recovered image up to 2dB.

Prospects
> Other regularization terms: Total Variation? [, regularization?

> Analyze the effects of the sensing matrix on the reconstruction
performance and design an optimal sensing matrix
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Thanks
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Basis Representation

Basis representation

=0 P P

> ¥, @ ¥y 2D-Wavelet Symmlet 8 basis

» W3: cosine basis.
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PSNRs for Different Reconstruction Algorithms

Compression ratio | 13% | 26% | 40% | 53% | 66%
Proposed method | 24.4 | 27.1 | 28.6 | 29.6 | 30.4
Bayesian LASSO 229 | 26.0 | 27.5 | 28.4 | 284
SpaRSA smooth 252 | 27.1 | 28.8 | 29.7 | 30.6
SpaRSA LASSO 235 | 26.8 | 285 | 294 | 304

Table: PSNRs [dB] obtained by the different algorithms.
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Computational Cost

Computational cost | lterations | Seconds
Proposed method 500 20 x 10°
Bayesian LASSO 750 18 x 10°
SpaRSA smooth 300 316
SpaRSA LASSO 300 42

Table: Computational costs for a 53% compression ratio.
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