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Compressive Spectral Imaging (CSI)

n1 n1

n2

CCD Amici 
Prism 

Relay 
Lens 

Band-pass 
Filter 

Coded 
Aperture 

Objective 
Lens 

Piezo 
system 

Coded Aperture Snapshot Spectral Imaging (CASSI)

Compressive Spectral Imaging (CSI): recovering the full spatial and spectral
information of a scene from undersampled random projections acquired by a
compressive spectral imager such as CASSI.
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Compressive Sensing Measurements

Sensing matrix

y = Φx+ e

where Φ is fixed and e is an additive Gaussian noise, i.e., e ∼ N (0, σ2
n)

I Diagonal patterns related
to the coded aperture

I Shifted patterns due to the
prism effect

I Possible acquisition of
multiple snapshots
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Compressive Sensing Measurements

Sparse representation of the image

x = Ψθ

where Ψ is constructed from predefined atoms

e.g., using the wavelet transform
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Two stage decomposition

Problem: how to estimate the unknown image x from compressed
measurements y = Φx+ e?
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Fusion as an Inverse Problem

Data fidelity term

1

2
‖y −Φx‖22 =

1

2
‖y −Hθ‖22

Sparse regularization

ϕ1(θ) = ‖θ‖1

Spatial regularization

ϕ2(θ) = ‖(B − I)Ψθ‖22
where B is an appropriate weighting matrix (low-pass filter)

Conclusion

arg min
θ

[
1

2
‖y −Hθ‖22 + τϕ1(θ) + λϕ2(θ)

]
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Bayesian LASSO1

Observation model

y = Hθ + n

where θ is sparse and n ∼ N (0, σ2
n)

Optimization problem

arg min
θ

[
1

2σ2
n

||y −Hθ||2 + τ ||θ||1
]

Problem: how to adjust the regularization parameter τ?

Equivalent problem

arg max
θ

[
exp

(
− 1

2σ2
n

||y −Hθ||2
)

exp(−τ ||θ||1)

]
1 T. Park and G. Casella, ”The Bayesian Lasso,” Journal of the American Statistical Association, vol. 103, no.
482, pp. 681-686, 2008.
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Bayesian LASSO

Observation model

y = Hθ + n, sparse θ, n ∼ N (0, σ2
nIN )

Bayesian formulation

I Gaussian likelihood

f(y|θ) = N (Hθ, σ2
nIN ) ∝ exp

(
− 1

2σ2
n

||y −Hθ||2
)

I Independent Laplacian priors

f(θ|τ) =

p∏
i=1

exp(−τ |θi|) = exp(−τ ||θ||1)

I Posterior

f(θ|y) ∝ exp

(
− 1

2σ2
n

||y −Hθ||2
)

exp(−τ ||θ||1)
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Hierarchical Bayesian Model

I Gaussian likelihood

f(y|θ, σ2
n) = N (Hθ, σ2

nI) ∝ exp

(
− 1

2σ2
n

||y −Hθ||2
)

I Independent Laplacian priors

f(θ|τ) =

p∏
i=1

exp(−τ |θi|) = exp(−τ ||θ||1)

I Joint noise variance and hyperparameter prior

π(τ, σ2
n)

I Posterior

f(θ, σ2
n, τ |y) ∝ exp

(
− 1

2σ2
n

||y −Hθ||2
)

exp(−τ ||θ||1)π(τ, σ2
n)

How can we estimate θ, σ2
n, τ?
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The Bayesian LASSO

Posterior

f(θ, σ2
n, τ |y) ∝ exp

(
− 1

2σ2
n

||y −Hθ||2
)

exp(−τ ||θ||1)π(τ, σ2
n)

Completion

I Scale mixture of a Gaussians distributions

τ

2
e−τ |θi| =

∫ ∞
0

1√
2πs

e−
θ2i
2s
τ2

2
e−

τ2s
2 ds

I Hierarchical representation

y ∼ N (y;Hθ, σ2
nIN )

θ|σ2
n, s

2
1, ..., s

2
p ∼ N (θ; 0p, σ

2
nDp), Dp = diag(s21, ..., s

2
p)

s21, ..., s
2
p|τ ∼

p∏
j=1

(
τ2

2
e−

τ2s2j
2

)
, π(τ) ∼ 1/τ

π(σ2
n) ∼ 1/σ2

n (Jeffreys prior)
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Generalized Inverse Gaussian Distribution

π(x) =
(a
b

)1/4
K−1

1/2

(√
ab
) 1√

x
exp

[
−1

2

(
b

x
+ ax

)]
IR+(x)

where K1/2 is a modified Bessel function, hence∫ ∞
0

1√
x

exp

[
−1

2

(
b

x
+ ax

)]
dx =

(
b

a

)1/4

K1/2

(√
ab
)

=

√
π

2

1√
a

exp
(
−
√
ab
)
.

can be used to demonstrate that the Laplace distribution is a scale mixture of
Gaussian distributions.
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Gibbs Sampler

Algorithm 1 Gibbs sampler

1: Initialize τ and σ2
n

2: Sample θ from its prior distribution
3: repeat
4: for i = 1 to p do
5: Sample s2i from f(s2i |θi, σ2

n, τ)
6: end for
7: Sample θ from f(θ|y, σ2

n, s
2)

8: Sample τ from f(λ|θ)
9: Sample a from f(a|δ2)

10: Sample σ2
n from f(σ2

n|y,θ, δ2)
11: until convergence
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Include Spatial Regularization into Bayesian LASSO

Optimization problem

arg min
θ

[
1

2σ2
n

||y −Hθ||2 + τ ||θ||1 + λ||(B − I)Ψθ||2
]
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(a) Zero mean Gaussian filter of size 3× 3 with σ = 0.6, (b) matrix B created by
using the Gaussian filter of (a).
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Include Spatial Regularization into the Bayesian LASSO

Bayesian formulation

I Equivalent problem

arg max
θ

[
exp

(
− 1

2σ2
n

||y −Hθ||2 − τ ||θ||1
)

exp(−λ||(B − I)Ψθ||2)

]
I Our proposal
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Gibbs Sampler

Algorithm 2 Gibbs sampler

Initialize a, σ2
n and λ

Sample θ from its prior distribution
repeat

for i = 1 to N do
Sample δ2i from f(δ2i |θi, σ2

n, a)
end for
Sample θ from f(θ|y, σ2

n, δ
2, λ)

Sample λ from f(λ|θ)
Sample a from f(a|δ2)
Sample σ2

n from f(σ2
n|y,θ, δ2)

until convergence
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Conditional Distributions of f(σ2n,θ, a, λ, δ
2
i |y)

Full conditionals f(δ2i |θi, σ2
n, a), f(θ|y, σ2

n, δ
2, λ), f(λ|θ), f(a|δ2) and

f(σ2
n|y,θ, δ2) associated with the posterior distribution of interest.

δ2i GIG
(

1
2
, a,

θ2i
σ2
n

)
θ N

(
ΣHT y
σ2
n

,Σ
)
,Σ−1 = 1

σ2
n

(HTH + ∆−1) + λC−1

λ G
(
NML

2
+ αλ,

||(B−I)Ψθ||2
2

+ βλ
)

a G
(
NML, ||δ||

2

2

)
σ2
n IG

(
NML+P

2
, 1
2

[
||y −Hθ||2 +

∑ θ2i
δ2i

])
Sampling θ using a perturbation-optimization algorithm2

2F. Orieux, O. Feron and J. F. Giovannelli, ”Sampling High-Dimensional Gaussian Distributions for General Linear
Inverse Problems,” IEEE Signal Processing Letters, vol. 19, no. 5, pp. 251-254, May 2012.
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Qualitative Results

(a) (b)30.18 dB 28.79 dB

30.15 dB 29.79 dB
Seventh spectral band of the image: (Left) Ground truth. Reconstruction results for:

(top center) the proposed method, (bottom center) SpaRSA3 Smooth, (top right)
Bayesian LASSO and (bottom right) SpaRSA LASSO.

3 S. J. Wright, R. D. Nowak, and M. A. T. Figueiredo, ”Sparse reconstruction by separable approximation,” IEEE
Transactions on Signal Processing, vol. 57, no. 7, pp. 2479−2493, July 2009.
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Figure: Spectral signature for pixel #(20, 33).

I The estimates obtained using the smoothing term are closer to the ground truth.

I Bayesian methods provide confidence measures for the estimates
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Conclusions and Future Work

Conclusions

I Hierarchical Bayesian model solving the compressive spectral imaging
problem by promoting the image to be sparse in a given basis and smooth
in the spatial domain.

I A Gibbs sampler sampling the full image in a single step using a
perturbation optimization algorithm

I Including a spatial smoothing term can improve the PSNR of the
recovered image up to 2dB.

Prospects

I Other regularization terms: Total Variation? lp regularization?

I Analyze the effects of the sensing matrix on the reconstruction
performance and design an optimal sensing matrix
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Thanks
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Basis Representation

Basis representation

Ψ = Ψ1 ⊗Ψ2 ⊗Ψ3

I Ψ1 ⊗Ψ2: 2D-Wavelet Symmlet 8 basis

I Ψ3: cosine basis.
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PSNRs for Different Reconstruction Algorithms

Compression ratio 13% 26% 40% 53% 66%
Proposed method 24.4 27.1 28.6 29.6 30.4
Bayesian LASSO 22.9 26.0 27.5 28.4 28.4
SpaRSA smooth 25.2 27.1 28.8 29.7 30.6
SpaRSA LASSO 23.5 26.8 28.5 29.4 30.4

Table: PSNRs [dB] obtained by the different algorithms.
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Computational Cost

Computational cost Iterations Seconds

Proposed method 500 20× 103

Bayesian LASSO 750 18× 103

SpaRSA smooth 300 316
SpaRSA LASSO 300 42

Table: Computational costs for a 53% compression ratio.
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