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ABSTRACT

We present an approach for detecting application level proto-
cols over a wireless communications link, without the need
for demodulation or decryption. Our detector is suitable for
diverse radio types, since only simple external signal features
are used as inputs. We show that the Profile Hidden Markov
Model (PHMM) is well suited to this task, due to the proba-
bilistic nature of the wireless channel and the discrete nature
of application level traffic. We include results evaluating the
detection performance for two application protocols in 802.11
in the presence of background traffic. Using only inter-arrival
time and packet size as inputs, we show capable performance
for both detection and discrimination between the two. We
go on to argue that our approach will work with other phys-
ical layer and medium access control layer types due to the
simplicity of the inputs.

Index Terms— Wireless collaboration, Spectrum Infer-
ence, Application Detection, Spectrum Sharing

1. INTRODUCTION

The continuing exponential increase in wireless radio frequency

traffic, which is expected to grow from 4.4 exabytes per month
globally in 2015 to an excess of 30 exabytes per month in
2020 [1] will drive increasing attention to the problem of spec-
trum sharing. Over the past decade, methods for radios to find
and utilize clear spectrum have been a key focus of the bur-
geoning field of cognitive radio research which seeks to miti-
gate this impending crisis [2, 3, 4]. Unfortunately this sense-
and-avoid approach that focuses on finding unused spectrum
can only do so much in the face of such a massive increase in
wireless traffic. We propose a new approach that emphasizes
intelligent collaboration, in which radios devise methods to
optimally share channels to ensure valuable capacity does not
go unused. One key technical hurdle will be enabling devices
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to collaborate to share the wireless medium despite having no
direct means of communication.

A major focus will be to
develop methods by which | Estimate Tolerance |
radios infer the state, behav- @
ior, and intentions of oth-
ers using only externally
observable features. The e aiy
process for radio collabora- [Transmit |[E) [ Estimate state |
tion over a shared wireless
medium can be broken into
a few steps, as outlined in
Fig. 1. To start an agent se-
lects a channel that, despite
being in use by an incumbent, has some perceived tolerance
to additional traffic. The agent may select its transmission pa-
rameters according to that estimate before entering the chan-
nel. Once sharing the channel, the agent will continue moni-
toring the state of the incumbent (state estimation) and adjust
its parameters accordingly to maintain efficient channel usage
by the incumbent. State estimation can include but is not lim-
ited to incumbent health monitoring (e.g. throughput estima-
tion), association of incumbent behavior changes with agent
actions, and detection of critical application level protocols.

The focus of this paper is a novel inference method to sup-
port cognitive radio collaboration. We present a detector for
application level protocols that works without demodulation,
making it useful for radios that do not have a common com-
munications protocol. This allows for the possibility of defin-
ing spectrum sharing rules based on application type, rather
than radio network type, which represents a shift from stan-
dard cognitive radio research.

Our detector models the sequential flow of features of the
incumbent’s signaling and attempts to associate that model
with stored models of application layer protocols. We choose
the profile hidden Markov model (PHMM) [5, 6] as our de-
tector for its proven ability to detect genetic sequences with
mutations. This is a crucial property, since interleaving with
random amounts of background traffic, and erasures due to
signal fades and packet collisions—close analogies of genetic
mutations—are unavoidable in the wireless domain.

The rest of this paper is organized as follows. In Sec-
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Fig. 1. General outline of
the collaborative spectrum
sharing process.
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Fig. 2. The Profile Hidden Markov Model with Insert (I),
Match (M), and Delete (D) states.

tion 2 we describe this paper’s contribution and describe re-
lated work. In Section 3 we formulate the problem and intro-
duce the detector. Section 4 describes our experimental ap-
proach for validation with real data and Sections 5 and 6 con-
tain our results and a discussion of them, respectively. Sec-
tion 7 describes a live demonstration of this technology given
at the 2015 Defense Advanced Research Projects Agency’s
(DARPA’s) Wait, What Conference, and we conclude in Sec-
tion 8.

2. CONTRIBUTIONS AND RELATED WORK

This paper investigates the PHMM as a novel detector for
known applications over an unknown wireless network. We
argue for the PHMM’s suitability to the wireless domain by

demonstrating its robustness to interleaved traffic streams, packet

collisions, and missed detections. Further, we argue for its
suitability to intelligent collaboration applications due to its
ability to extract meaning from an incumbent network’s sig-
naling without needing demodulation.

An analogous application of the PHMM in the wireline
domain can be found in [7]. Here the PHMM is investigated
for its ability to perform sequence detection in encrypted data
due to its ability to handle variations between the observed
sequences of packets across multiple realizations of the same
protocol. While certain properties of the wireless domain
have somewhat close analogies to the wireline domain (e.g.
insertions due to multiplexed traffic), the wireless domain pro-
vides enough unique challenges (e.g. noisy features and sig-
nal fades) to warrant its own study.

3. TECHNICAL APPROACH

A key enabling characteristic of wireless communications is
that the unobservable temporal characteristics of application
layer protocols manifest as observable temporal characteris-
tics of physical layer (PHY) signaling. A model of the re-
lationship between application and PHY is depicted in the
top half of Fig. 3. Top rectangle: we model the application
layer protocol we wish to detect as a series of discrete states
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Fig. 3. A diagram of our network behavioral model along
with a description of our training process. White rectangles
and boxes represent data belonging to the sequence of inter-
est. Blue and black shapes indicate background traffic and
striped patterns indicate a mix.

S = Sp,51, -+ ,Sn—1 and the transition probabilities be-
tween them (i.e. as a Markov process). Second rectangle
down: at the medium access control (MAC) layer the appli-
cation is mapped to physical signaling and potentially inter-
leaved with background traffic (i.e. traffic belonging to other
users). This is depicted as white and black rectangles, respec-
tively. To an observer the presence of background manifests
itself as random amounts of insertions between states of the
sequence of interest. Third rectangle down: at the PHY the
combined traffic is transmitted. This is depicted as a striped
pattern to indicate a mixture of traffic pertaining to the se-
quence of interest and background.

The bottom half of Fig. 3 guides the description of both
the training and detection process for the PHMM. In both
cases this requires reducing the raw measurements made on
the PHY (i.e. digital inphase-and-quadrature samples) in di-
mensionality for a PHMM to be useful. This is the combined
function of the blocks labeled "Extract Features” and ”"Model
as States”, and is presented in more detail in Fig. 4. Feature
extraction is run either at fixed time and frequency intervals
or on identifiable bursts of data. The input can be described as
a received signal y(t € T;) defined by time extent 7T}, and the
output is a vector of feature values ®; = [¢1,p2,....0xk|. Next
a clustering algorithm is used to map each ®; to one of M
clusters [C1,C5,...,C] where M is usually chosen to be on
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Fig. 4. Feature extraction and clustering maps raw measure-
ments of the physical layer to a finite set of clusters.

the order of 10 (which is much less than the number of unique
feature vectors). States are then defined by which cluster they
belong to (1,2, ..., M). The relatively low number of clusters
is necessary for presenting the PHMM with a finite number
of possible states in order to have meaningful state transition
properties.

3.1. Training

Training is done in a supervised manner, and begins by record-
ing multiple instances of signaling containing the sequence of
interest. The output of training are two models: the "match”
that models the sequence of interest S, denoted as \g, and
the “background” that models background traffic, denoted as
Ap. The background model represents the overall distribu-
tion of features corresponding to packets that do not carry the
sequence of interest and is created using a single state HMM.

The PHMM model \g allows for variations between the
collected sequences of interest by defining two additional states
for each position in the standard Markov chain (see Fig. 2).
Insert states (denoted by 1) allow for one or more extra pack-
ets to be inserted between match states. Delete states (denoted
by D) allow for the k" match state (M) to be skipped.

The training process concludes by labeling the training
corpus according to what step of the sequence of interest each
state pertains, or as insertions. States that pertain to the se-
quence of interest are labeled as match states, and ones that
pertain to other traffic are labeled as insertions. Deletions are
specified when a state is missing. Transition probabilities are
obtained empirically from the training corpus.

3.2. Detection

The first step in detection is feature extraction, where the raw
received signal is converted to feature vectors, i.e. y(t €
T;) — ®;. Next for each ®; the detector scores the match be-
tween it and each cluster from the trained model P(®;|C),
P(®;|C5),...,P(®;|Cps). This results in a match score for
every cluster at every timestep which is then used to evaluate
the likelihood that the observations are due to \g, P(S|\g).
This quantity can be evaluated using the forward algorithm, a
standard dynamic programming method. More details about

sequence detection using the forward algorithm can be found
in [6].

Detection is declared when the ratio of log likelihood of
model match to background match exceeds a threshold, I':

log (P(S]As))
og (P (Shp)) M

4. EXPERIMENTAL SETUP

4.1. Test Protocols

We evaluate our detector against two application layer proto-
cols: network association using dynamic host control protocol
(DHCP) [8] and the secure socket layer (SSL) handshake [9].
Both protocols are used ubiquitously for wireless networking
and detection of either creates a more detailed understanding
of the current state and function of a network. Testing was
done via a leave-one-out approach: L + 1 instances of a given
protocol were collected and m (L + 1) tests were run where m
represents the number of Monte Carlo trials. For each group
of m tests, one instance was chosen to be detected against,
and the remaining L instances were used to train a model.

4.1.1. Network Association

Network association includes all traffic involved with associ-
ating a host to the wireless network including obtaining an IP
address from the access point via DHCP. We recorded net-
work association data during the formation of an 802.11 net-
work.

4.1.2. SSL Handshake

The SSL handshake precedes encrypted traffic and is a feature
of hyper text transfer protocol secure (HTTPS). HTTPS is an
extension of normal HTTP where the SSL handshake is added
as a precursor to the transfer of data to set up an encrypted
connection between host and server. We visited the following
websites to collect implementations of the SSL handshake:
https://google.com, https://yahoo.com, and https://apple.com.

4.2. Test Data Collection

For PHY/MAC we used IEEE 802.11g [10]. We collected
data over the air in an office environment during normal busi-
ness hours on 802.11 channel 1 (2.412 GHz) in order to en-
sure a realistic concentration of background traffic. We chose
channel 1 after Wireshark—an open source network packet an-
alyzer [11]-logs showed it to have the highest arrival rate
of background packets among all available 802.11 channels.
Three nodes were used: the server, host, and passive observer.
A high level diagram of this setup is presented in Fig. 5. A
description of each element follows:

The server was an 802.11g access point connected to the
internet via a wired connection. This served as the hub of a
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Fig. 5. Diagram of experimental setup. All curved lines rep-
resent wireless 802.11 traffic on channel 1. Black lines rep-
resent traffic belonging to the test network, while gray ones
represent traffic emanating from background emitters.

private 802.11 network to which only the Host could join, on
channel 1. This network is herein referred as Test Network.
The host was a laptop which connected to the Test Network
via internal WiFi adapter. Collects were performed by initi-
ating the sequence of interest from this laptop over the Test
Network. The passive observer was a separate PC running
Wireshark to monitor all traffic on 802.11 channel 1 using
a specialized USB adaptor. Despite the passive observer’s
ability to demodulate WiFi, the Wireshark logs it produced
were only used to generate features indicative of the observ-
able properties of the signalling. A more thorough explain
our features is in the next subsection.

Collection followed these steps: 1) Begin Wireshark packet
capture on Passive Observer. 2) Generate protocol traffic us-
ing Host PC. 3) Stop Wireshark packet capture. 4) Disconnect
Host from Test Network.

4.3. Feature Set

We used two features: packet interarrival time and packet size
in bytes. Reliable measurement of interarrival time amounts
to the detection of signal presence with a sufficient time res-
olution, meaning the feature extractor we require is no differ-
ent than one required by many primary user sensing studies
in mainstream cognitive radio research, including ones which
rely on the HMM such as [12] and [13]. Packet size can be
approximated as a function of the detected modulation type
used and packet duration. Modulation detection for digital
signals has been under consideration for years (see [14]), and
while recognition of the modulation of orthogonal frequency
division multiplexing (OFDM) subcarriers is not as mature as
modulation recognition for single carrier systems, both classi-
fication of OFDM versus single carrier modulation and blind
estimation of OFDM symbol timing—two key capabilities that
could be combined for this task—are understood (for an exam-
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Fig. 6. Features corresponding to match states and back-

ground states for the SSL handshake (top panel) and network
connect (bottom). The horizontal axes are constrained to the
span of match states. No noise was added to either feature for
this plot.

ple of each see [15], and [16], respectively).

For each sequence S a PHMM was trained by defining
match states by fitting features pertaining to each state of .S
to a cluster (making one cluster per match state), and insert
states by fitting all data collected between match states to a
single cluster. The background single-state HMM was cre-
ated by defining one background cluster pertaining to traffic
collected when S was not present. Each cluster was defined as
a Gaussin mixture model (GMM), i.e. parameterized by the
mean, variance, and mixing coefficients of a mixture of Gaus-
sian functions. The clustering algorithm used was expectation
maximization (EM). For a description of formulation of the
GMM using EM see [17], chapter 9. The transition probabili-
ties between states was determined by counting and averaging
transitions between states in the training data.

5. EXPERIMENTAL RESULTS

To state the necessity for a sequential detector like the PHMM
we plot the two features (interarrival time and packet size)
on the same axes in Fig. 6. From these figures it is clear
that separation of these features with a non-temporal classifier
would require a decision boundary defined by an extremely
high number of parameters. Due to the small amount of train-
ing data, there would be an extremly high likelihood of errors
due to overfitting.

Our data set included 24 SSL handshake messages, 10
network connects, and 21 background collects of approxi-
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Fig. 7. Probability of detection vs. probability of false alarm
for SSL handshake ”SSL” and Network connect with DHCP
”Net Join”, for noiseless features and features in 30 dB of
SNR. Note that the same values for I' were used for all four
cases.

mately 30 second duration each. We evaluated the detec-
tion performance for each model versus background for both
noiseless and noisy features where noisy features were sub-
jected to additive Gaussian noise with 30 dB SNR. In each
noisy case results were averaged over 10 Monte Carlo trials.
The probability of false alarm versus true positive rate for all
four cases (Network Connect and SSL, noiseless and 30dB
SNR) is given in Fig. 7.

We also include results on the cross-detection performance
of our system by evaluating the positive detection rate of each
model against the other in Fig. 8.

6. DISCUSSION

Two possible reasons why the Network Connect detector per-
forms better than the SSL handshake detector in Fig. 7 are
the difference in feature values (apparent in Fig. 6) and differ-
ing sequence lengths: the SSL model had 8 states while the
Network Connect model had 9.

The cross detection results in Fig. 8 affirm that a system
employing both detectors simultaneously can gain a clear un-
derstanding of the state of the incumbent network at the ap-
plication layer. For either traffic type the rate at which the
correct detector rang up was up to 90 percent higher than the
rate at which the incorrect detector did.

Positive Detection Rate
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Fig. 8. Positive detection rate (the percentage of instances
in which detection was declared) for SSL handshake ”SSL”
and Network Join with DHCP “Net Join” for both types of
detector. In the legend, truth indicates the type of application
being hosted. Model indicates which detector was employed.
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Fig. 9. Connection diagram for the demonstration setup at
DARPA Wait, What 2015.
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7. DEMONSTRATION AT DARPA WAIT, WHAT?

A real time demonstration was presented at the DARPA Wait,
What? Forum in September 2015 [18]. A secondary network
used an application detector to determine whether an incum-
bent 802.11 network was hosting a Google Video chat session
or an FTP file transfer, and tuned its transmission parameters
accordingly before entering the channel. Fig. 9 is a diagram
of the physical setup.

8. CONCLUSION

This paper presents a detector for application layer protocols
hosted on a wireless communications link that does not re-
quire a detailed understanding of the physical layer or medium
access protocol in use (i.e. no need for demodulation). To
evaluate this detector’s suitability to the task of spectrum shar-
ing, particularly for estimation of an incumbent’s state, we
showed reliable detection performance for two ubiquitous net-



working applications.

Future work will focus on increasing the level of auton-
omy in collaborative radios, allowing them to learn and adapt
to the environment as well as understand the behaviors of
other networks. Two possible frontiers include methods for
jointly estimating the state of an incumbent and adjusting trans-
mission parameters, and methods that require less pre-training
for robust state and tolerance estimation.
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