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Background 
• Traditionally multicast transmission and confidential transmission 

are usually independently investigated in the field of physical (PHY) 
layer signal processing. 

• PHY multicasting offers a way to efficiently transmit common 
messages that all receivers can decode. 

• PHY security can overcome the inherent difficulties of cryptographic 
methods, i.e., the distribution and management of secrecy keys in 
wireless networks. 

• For signal processing techniques, many literatures focus on finding 
the optimal covariance matrix of the transmitted message subject to 
a power constraint, either in PHY multicasting or in PHY security. 
 



3 3 

Background 
• A brief review of PHY security (MISOSE, perfect ECSI) 

 

Fig.1. MISO Wiretap System Model  
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The maximization of Cb admits closed-form expressions.  
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Background 
• A brief review of PHY security (MISOME, AN-aided) 

 

Fig.2. The idea of AN-aided transmit beamforming[1] 

Bob’s channel nulls out the 
artificial noise. 

[1]W.-C. Liao, T.-H. Chang, W.-K. Ma and C.-Y. Chi, “QoS-based transmit beamforming in the presence of eavesdroppers: 
an optimized artificial-noise-aided approach”, IEEE Trans. Signal Process., vol. 59, no. 3, pp. 1202-1216, Mar., 2011 
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Background 
• A brief review of PHY multicasting (MU-MISO, perfect CSI) 

 

Fig.3. MISO Multicasting System Model[2]  
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[2]I. H. Kim, D. J. Love, and S. Y. Park, “Optimal and successive approaches to signal design for multiple antenna 
physical layer multicasting,” IEEE Trans. Commun., vol. 59, no. 8, pp. 2316–2327, 2011. 
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Background 
• A brief review of PHY multicasting 

 
Achievable rate of multicasting system is given by 

[3] S. X. Wu, W.-K. Ma, and A. M.-C. So, “Physical-layer multicasting by stochastic transmit beamforming and Alamouti 
space-time coding,” IEEE Trans. Signal Process., vol. 61, no. 17, pp. 4230–4245, Sep. 2013. 

0
2min log 1m
k

H
k k

k
R

σ
 

= + 
 

Qh h
0

H HQ Fss F

The multicast capacity in the presence of CSIT is given by 

0 1,2,.

0
2..,

0 0

( ) max min log(1 )

s. t . ,Tr( ) .

N

H
i i

MC
i

i KH
C P

P
σ=∈

= +

≤

Q

Q

Q

h h

0Q 

This maximization problem can be recast as an SDP problem [3]. 
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Background 
• Recently a heuristic and interesting way is to merge multiple services, 

e.g., multicast service and confidential service, into one integral service for 
one-time transmission. 

• Service integration in the physical (PHY) layer enables coexisting services 
to share the same resources, thereby significantly increasing the spectral 
efficiency.  

• Many works focused on PHY service integration from the viewpoint of 
information theory, i.e., derived capacity results or characterized coding 
strategies that result in certain rate regions. 

• Few works focused on the transmit design to achieve the capacity region, 
i.e., designing the input covariance matrices of different service 
information. 

Literature Scenario Remarks 

[Ly-Liu-Liang’10] 
With only one conf ident ia l 
message W1 and one common 
message W0 

MIMO Gaussian BC, under 
the matrix power constraint 
and total power constraint 

[Liu-Liu-Poor-Shamai’10] 
Two confidential messages W1 
and  W 2  and  one  common 
message W0 

MIMO Gaussian BC, under 
the matrix power constraint 

[Wyrembelski-Boche’12] 

Two-phase communication: two 
private messages W1 and W2, 
one multicast message W0, and 
one confidential message W3 

MIMO Gaussian BBC, under 
the matrix power constraint 
and total power constraint 
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Contributions 
• We focus on an AN-aided transmit design and maximize the 

corresponding achievable secrecy rate region, i.e., finding the 
optimal input covariance matrice for confidential message, 
multicast message and AN. 

• To this end, we specify variant target QoMS, and meanwhile 
maximize the corresponding achievable secrecy rates with the 
aided AN.  

• We prove the optimality of beamforming by showing the optimal 
covariance matrix associated with confidential message is of rank 
one. 

0

1

Design the input 
covariance matrices 
to find and achieve 
these boundary 
points. 

Fig.1. Secrecy rate region  
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System model 
• A multi-antenna transmitter serves K receivers, and each receiver 

has a single antenna. 
• All receivers have ordered the multicast service and receiver 1 

further ordered the confidential service. 
• The channel state information (CSI) of all receivers is assumed to 

be available at the transmitter. 

Multicast signal: x0

Receiver 2

x0, xc, xa

Receiver K

Receiver 1

……

Fig.2. System model 

MISO multiuser 
Gaussian 
broadcast 
channel 
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Problem Formulation 

• The achievable rate region Cs is given as the set of  
nonnegative rate pairs (R0,Rc) satisfying [1] 
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Qc (resp. Q0, Qa) represents the covariance matrix of confidential message 
(resp. multicast message, AN); K (resp. Ke) denotes the indices of all 
receivers (resp. unauthorized receivers). 
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Problem Formulation 
The problem of interest in this paper is to determine the optimal 
precoding matrix Qc, Q0 and Qa in the following optimization 
problem 
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Remarks: This optimization problem also provides us a way to determine 
the boundary points of the secrecy rate region.  
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Problem Formulation 

Further simplify (1) by introducing a slack variable α, then we obtain 
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Nonconvex 
constraint!! 

Nonconvex objective 
function!!  

To deal with the non-convexity in (2), next we develop a two-stage reformulation of 
(2). 

(2) 
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A Two-stage Reformulation of (2) 

Outer problem w.r.t α *

1
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2
11 Pα ≤ + hα's upper bound can be determined by 

One-dimensional search, e.g., the golden section algorithm, can handle the 
outer problem. 

Quasiconvex optimization 
problem [Boyd’09] 

Affine 
constraint 

Bisection method and CVX solver can 
collectively solve the inner problem. 

(3) 

(4) 
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Charnes-Cooper transformation-based reformulation of (4) 

By applying the Charnes-Cooper transformation 
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We rewrite (4) as 
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Convex optimization 
problem!! 

(5) 
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The optimality of transmit beamforming 

    Proposition 1: The optimal transmit covariance matrix of the confidential message, 
Qc

*, has a rank equal to 1. 

Proof: It suffices to prove the optimal Qc to (4) is of rank one, for any given α.   
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Recall (4) 

Optimal solution 

Optimal objective value 
Rα

( )0 ,c aQ Q Q,
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The optimality of transmit beamforming 

   Step 1: We prove (4) has identical solutions to a power minimization problem (6). 
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Optimal solution 

Same constraints 
as (4) 
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The optimality of transmit beamforming 

Some quick implications 
The definition of Rα
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The optimality of transmit beamforming 

The Lagrangian associated with (7) 
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The optimality of transmit beamforming 

• (9.1), (9.4) and (9.5) are actually the constraints of the dual problem of (6) 
• (9.3) is actually the inequality constraint of (6) 
• (9.2) is the complementary slackness 

Karush-Kuhn-Tucker (KKT) conditions of (6)   
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The optimality of transmit beamforming 

Postmultiplying (9.1) by         and making use of (9.2) yield 
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Eliminating the trivial solution, we have completed our proof. 
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The optimality of transmit beamforming 

How about the multicast message and AN? 

Proposition 1: If there only exists a single unauthorized receiver, then  
* *
0rank( ) 1, rank( ) 1.a= ≤Q Q

Proof:  The power minimization problem (6) is a solvable separable SDP problem. 
A general form of separable SDP problem: 
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• Cl and Aml are Hermitian matrices (not necessarily positive semidefinite) 
• bm is a real number, and 
• Xl, l=1,2,…,L, are Hermitian matrices  
• It is immediate to verify that (6) is a separable SDP.  

{ , , }m∈ ≤ ≥ =
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The optimality of transmit beamforming 

For a solvable SDP problem, the following inequality holds. [Theorem 3.2,5] 

M denotes the number of linear equality and inequality in the optimization 
problem, which is 2K in (6). 

When K = 2, incorporating                            yields 

[5] Y. Huang and D. Palomar, “Rank-constrained separable semidefinite programming with applications to 
optimal beamforming,” IEEE Trans. Signal Process., vol. 58, no. 2, pp. 664–678, Sep. 2010. 

2 * 2 * 2 *
0rank ( )+rank ( )+rank ( ) ,a c M≤Q Q Q

*rank( ) 1c =Q
* *
0rank( ) 1, rank( ) 1a≤ ≤Q Q
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Numerical Results 

Fig.2. Secrecy rate regions with and without AN 

Some observations from Fig.2  When P=20W, K=4 
• Secrecy rates with AN are mostly 

higher than those without AN. 
• With the increasing demand for 

QoMS, the two curves tend to be 
coincident. 

 When P=10W, K=4 
• The gap between these two strategies 

dramatically reduced. 
• Possible reason: In order to guarantee 

the QoMS, AN must decrease to 
reduce the interference at all receivers 

 When P=20W, K=2 
• AN does not offer any secrecy gains. 
• Reason: The unauthorized receivers 

pose less security threat to the system. 

P=20W, K=2 
 

P=20W, K=4 
 

P=10W, K=4 
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