

- IEEE GLOBAL SIP ORLANDO 2015

December 14-16, 2015
Buena Vista Palace Hotel \& Spa

Artificial-Noise Aided Transmit Design for Multi-User MI SO Systems with I ntegrated Services

Weidong Mei, Lingxiang Li, Zhi Chen, Chuan Huang

National Key Lab of Science and Technology on Communications,
University of Electronic Science and Technology of China

Background

- Traditionally multicast transmission and confidential transmission are usually independently investigated in the field of physical (PHY) layer signal processing.
- PHY multicasting offers a way to efficiently transmit common messages that all receivers can decode.
- PHY security can overcome the inherent difficulties of cryptographic methods, i.e., the distribution and management of secrecy keys in wireless networks.
- For signal processing techniques, many literatures focus on finding the optimal covariance matrix of the transmitted message subject to a power constraint, either in PHY multicasting or in PHY security.

Background

- A brief review of PHY security (MISOSE, perfect ECSI)

Fig.1. MISO Wiretap System Model
Achievable secrecy rate is given by

$$
\begin{gathered}
R_{\mathrm{c}}=C_{b}-C_{e} \quad \mathbf{Q}_{c} \triangleq|s|^{2} \mathbf{v v}^{H} \\
C_{b}=\log \left(1+\frac{\mathbf{h} \mathbf{Q}_{c} \mathbf{h}^{H}}{\sigma_{b}^{2}}\right), C_{e}=\log \left(1+\frac{\mathbf{g} \mathbf{Q}_{c} \mathbf{g}^{H}}{\sigma_{e}^{2}}\right)
\end{gathered}
$$

The maximization of C_{b} admits closed-form expressions.

Background

- A brief review of PHY security (MISOME, AN-aided)

Fig.2. The idea of AN-aided transmit beamforming ${ }^{[1]}$
[1]W.-C. Liao, T.-H. Chang, W.-K. Ma and C.-Y. Chi, "QoS-based transmit beamforming in the presence of eavesdroppers: an optimized artificial-noise-aided approach", IEEE Trans. Signal Process., vol. 59, no. 3, pp. 1202-1216, Mar., 2011

Background

- A brief review of PHY multicasting (MU-MISO, perfect CSI)

Fig.3. MISO Multicasting System Model ${ }^{[2]}$
[2]I. H. Kim, D. J. Love, and S. Y. Park, "Optimal and successive approaches to signal design for multiple antenna physical layer multicasting," IEEE Trans. Commun., vol. 59, no. 8, pp. 2316-2327, 2011.

Background

- A brief review of PHY multicasting

Achievable rate of multicasting system is given by

$$
R_{m}=\min _{k} \log \left(1+\frac{\mathbf{h}_{k} \mathbf{Q}_{\mathbf{0}} \mathbf{h}_{k}^{H}}{\sigma_{k}^{2}}\right) \quad \mathbf{Q}_{0} \triangleq \mathbf{F s s}^{H} \mathbf{F}^{H}
$$

The multicast capacity in the presence of CSIT is given by

$$
\begin{aligned}
& C_{M C}(P)=\max _{\mathbf{Q}_{0} \in H^{N i=1,2, \ldots, K}} \min _{K} \log \left(1+\frac{\mathbf{h}_{i}^{H} \mathbf{Q}_{0} \mathbf{h}_{i}}{\sigma_{i}^{2}}\right) \\
& \text { s.t. } \mathbf{Q}_{0} \succeq \mathbf{0}, \operatorname{Tr}\left(\mathbf{Q}_{0}\right) \leq P .
\end{aligned}
$$

This maximization problem can be recast as an SDP problem [3].
[3] S. X. Wu, W.-K. Ma, and A. M.-C. So, "Physical-layer multicasting by stochastic transmit beamforming and Alamouti space-time coding," IEEE Trans. Signal Process., vol. 61, no. 17, pp. 4230-4245, Sep. 2013.

Background

- Recently a heuristic and interesting way is to merge multiple services, e.g., multicast service and confidential service, into one integral service for one-time transmission.
- Service integration in the physical (PHY) layer enables coexisting services to share the same resources, thereby significantly increasing the spectral efficiency.
- Many works focused on PHY service integration from the viewpoint of information theory, i.e., derived capacity results or characterized coding strategies that result in certain rate regions.
- Few works focused on the transmit design to achieve the capacity region, i.e., designing the input covariance matrices of different service information.

Literature	Scenario	Remarks
[Ly-Liu-Liang'10]	With only one confidential message W_{1} and one common message W_{0}	MIMO Gaussian BC, under the matrix power constraint and total power constraint
[Liu-Liu-Poor-Shamai'10]	Two confidential messages W_{1} and W_{2} and one common message W_{0}	MIMO Gaussian BC, under the matrix power constraint
[Wyrembelski-Boche'12]	Two-phase communication: two private messages W_{1} and W_{2}, one multicast message W_{0}, and one confidential message W_{3}	MIMO Gaussian BBC, under matrix power constraint and total power constraint

Contributions

- We focus on an AN-aided transmit design and maximize the corresponding achievable secrecy rate region, i.e., finding the optimal input covariance matrice for confidential message, multicast message and AN.
- To this end, we specify variant target QoMS, and meanwhile maximize the corresponding achievable secrecy rates with the aided AN.
- We prove the optimality of beamforming by showing the optimal covariance matrix associated with confidential message is of rank one.

System model

- A multi-antenna transmitter serves K receivers, and each receiver has a single antenna.
- All receivers have ordered the multicast service and receiver 1 further ordered the confidential service.
- The channel state information (CSI) of all receivers is assumed to be available at the transmitter.

Problem Formulation

- The achievable rate region C_{s} is given as the set of nonnegative rate pairs $\left(R_{0}, R_{c}\right)$ satisfying [1]

$$
\begin{gathered}
R_{0} \leq \min _{k \in \mathcal{K}} C_{k, \mathrm{mc}}, \\
R_{\mathrm{c}} \leq C_{1}-\max _{k \in \mathcal{K}_{e}} C_{k} \\
C_{k, m c}=\log \left(1+\frac{\mathbf{h}_{k} \mathbf{Q}_{0} \mathbf{h}_{k}^{H}}{1+\mathbf{h}_{k}\left(\mathbf{Q}_{c}+\mathbf{Q}_{a}\right) \mathbf{h}_{k}^{H}}\right), k \in \mathcal{K} \\
C_{1}=\log \left(1+\frac{\mathbf{h}_{1} \mathbf{Q}_{c} \mathbf{h}_{1}^{H}}{1+\mathbf{h}_{1} \mathbf{Q}_{a} \mathbf{h}_{1}^{H}}\right), C_{k}=\log \left(1+\frac{\mathbf{h}_{k} \mathbf{Q}_{c} \mathbf{h}_{k}^{H}}{1+\mathbf{h}_{k} \mathbf{Q}_{a} \mathbf{h}_{k}^{H}}\right), k \in \mathcal{K}_{e} .
\end{gathered}
$$

Q_{c} (resp. $\mathrm{Q}_{0}, \mathrm{Q}_{\mathrm{a}}$) represents the covariance matrix of confidential message (resp. multicast message, AN); K (resp. K_{e}) denotes the indices of all receivers (resp. unauthorized receivers).

Problem Formulation

The problem of interest in this paper is to determine the optimal precoding matrix $\mathrm{Q}_{\mathrm{c}}, \mathrm{Q}_{0}$ and Q_{a} in the following optimization problem

Total power constraint

$$
\begin{align*}
& \max _{\mathbf{Q}_{0}, \mathbf{Q}_{a}, \mathbf{Q}_{c}} \log \frac{1+\left(1+\mathbf{h}_{1} \mathbf{Q}_{a} \mathbf{h}_{1}^{H}\right)^{-1} \mathbf{h}_{1} \mathbf{Q}_{c} \mathbf{h}_{1}^{H}}{\max _{k \in \mathcal{K}_{e}} 1+\left(1+\mathbf{h}_{k} \mathbf{Q}_{a} \mathbf{h}_{k}^{H}\right)^{-1} \mathbf{h}_{k} \mathbf{Q}_{c} \mathbf{h}_{k}^{H}} \mathrm{~m}_{k \in \mathcal{K}_{e}} C_{k} \\
& \text { s.t. } \min _{k \in \mathcal{K}}\left\{\log \frac{1+\mathbf{h}_{k}\left(\mathbf{Q}_{c}+\mathbf{Q}_{a}+\mathbf{Q}_{0}\right) \mathbf{h}_{k}^{H}}{1+\mathbf{h}_{k}\left(\mathbf{Q}_{c}+\mathbf{Q}_{a}\right) \mathbf{h}_{k}^{H}}\right\} \geq \tau, \tag{1}
\end{align*}
$$

$$
\begin{aligned}
& \operatorname{Tr}\left(\mathbf{Q}_{0}+\mathbf{Q}_{a}+\mathbf{Q}_{c}\right) \leq P \\
& \mathbf{Q}_{0} \succeq \mathbf{0}, \mathbf{Q}_{a} \succeq \mathbf{0}, \mathbf{Q}_{c} \succeq \mathbf{0}
\end{aligned}
$$

Demand for QoMS

Remarks: This optimization problem also provides us a way to determine the boundary points of the secrecy rate region.

Problem Formulation

Further simplify (1) by introducing a slack variable α, then we obtain

$$
\begin{align*}
& g^{*}(\tau)=\max _{\mathbf{Q}_{0}, \mathbf{Q}_{a}, \mathbf{Q}_{c}, \alpha} \log \left(\frac{1+\mathbf{h}_{1}\left(\mathbf{Q}_{c}+\mathbf{Q}_{a}\right) \mathbf{h}_{1}^{H}}{\alpha\left(1+\mathbf{h}_{1} \mathbf{Q}_{a} \mathbf{h}_{1}^{H}\right)}\right) \begin{array}{l}
\text { Nonconvex objective } \\
\text { function!! }
\end{array} \\
& \text { s.t. }(\alpha-1)\left(1+\mathbf{h}_{k} \mathbf{Q}_{a} \mathbf{h}_{k}^{H}\right)-\mathbf{h}_{k} \mathbf{Q}_{c} \mathbf{h}_{k}^{H} \geq 0, \forall k \in \mathcal{K}_{e}, \quad \begin{array}{l}
\text { Nonconvex } \\
\text { constraint!! }
\end{array} \\
& \mathbf{h}_{k} \mathbf{Q}_{0} \mathbf{h}_{k}^{H}-\tau^{\prime} \mathbf{h}_{k} \mathbf{Q}_{a} \mathbf{h}_{k}^{H}-\tau^{\prime} \mathbf{h}_{k} \mathbf{Q}_{c} \mathbf{h}_{k}^{H}-\tau^{\prime} \geq 0, \forall k \in \mathcal{K}, \tag{2}\\
& \operatorname{Tr}\left(\mathbf{Q}_{0}+\mathbf{Q}_{a}+\mathbf{Q}_{c}\right) \leq P, \\
& \mathbf{Q}_{0} \succeq \mathbf{0}, \mathbf{Q}_{a} \succeq \mathbf{0}, \mathbf{Q}_{c} \succeq \mathbf{0}, \\
& \tau^{\prime} \triangleq 2^{\tau}-1
\end{align*}
$$

To deal with the non-convexity in (2), next we develop a two-stage reformulation of (2).

A Two-stage Reformulation of (2)

$$
\begin{equation*}
\text { Outer problem w.r.t } \alpha \quad \gamma^{*}\left(\tau^{\prime}\right)=\max _{\alpha \geq 1} \eta\left(\alpha, \tau^{\prime}\right) \tag{3}
\end{equation*}
$$

α 's upper bound can be determined by $\alpha \leq 1+P\left\|\mathbf{h}_{1}\right\|^{2}$
One-dimensional search, e.g., the golden section algorithm, can handle the outer problem.

Inner problem w.r.t $\mathbf{Q}_{0}, \mathbf{Q}_{c}, \mathbf{Q}_{\mathrm{a}}$

Bisection method and CVX solver can collectively solve the inner problem.

$$
\begin{array}{ll}
\eta\left(\alpha, \tau^{\prime}\right)=\max _{\mathbf{Q}_{0}, \mathbf{Q}_{a}, \mathbf{Q}_{c}} \frac{1+\mathbf{h}_{1}\left(\mathbf{Q}_{c}+\mathbf{Q}_{a}\right) \mathbf{h}_{1}^{H}}{\alpha\left(1+\mathbf{h}_{1} \mathbf{Q}_{a} \mathbf{h}_{1}^{H}\right)} \begin{array}{l}
\text { Quasiconvex optimization } \\
\text { problem [Boyd'09] }
\end{array} \\
\text { s.t. } & (\alpha-1)\left(1+\mathbf{h}_{k} \mathbf{Q}_{a} \mathbf{h}_{k}^{H}\right)-\mathbf{h}_{k} \mathbf{Q}_{c} \mathbf{h}_{k}^{H} \geq 0, \forall k \in \mathcal{K}_{e}, \quad \text { Affine } \\
& \mathbf{h}_{k} \mathbf{Q}_{0} \mathbf{h}_{k}^{H}-\tau^{\prime} \mathbf{h}_{k} \mathbf{Q}_{a} \mathbf{h}_{k}^{H}-\tau^{\prime} \mathbf{h}_{k} \mathbf{Q}_{c} \mathbf{h}_{k}^{H}-\tau^{\prime} \geq 0, \forall k \in \mathcal{K}, \\
& \operatorname{Tr}\left(\mathbf{Q}_{0}+\mathbf{Q}_{a}+\mathbf{Q}_{c}\right) \leq P, \tag{4}\\
& \mathbf{Q}_{0} \succeq \mathbf{0}, \mathbf{Q}_{a} \succeq \mathbf{0}, \mathbf{Q}_{c} \succeq \mathbf{0} .
\end{array}
$$

Charnes-Cooper transformation-based reformulation of (4)

By applying the Charnes-Cooper transformation

$$
\mathbf{Q}_{c}=\mathbf{Z} / \xi, \mathbf{Q}_{a}=\boldsymbol{\Gamma} / \xi, \mathbf{Q}_{0}=\boldsymbol{\Phi} / \xi
$$

We rewrite (4) as

$$
\begin{array}{lll}
\eta\left(\alpha, \tau^{\prime}\right)=\max _{\mathbf{Q}, \boldsymbol{\Gamma}, \boldsymbol{\Phi}, \xi} \xi+\mathbf{h}_{1}(\mathbf{Z}+\boldsymbol{\Gamma}) \mathbf{h}_{1}^{H} & \\
\text { s.t. } & \xi+\mathbf{h}_{1} \boldsymbol{\Gamma} \mathbf{h}_{1}^{H}=\alpha^{-1}, & \text { convex optimization } \\
& (\alpha-1)\left(\xi+\mathbf{h}_{k} \boldsymbol{\Gamma} \mathbf{h}_{k}^{H}\right) \geq \mathbf{h}_{k} \mathbf{Z} \mathbf{h}_{k}^{H}, \forall k \in \mathcal{K}_{e}, \tag{5}\\
& \mathbf{h}_{k} \mathbf{\Phi} \mathbf{h}_{k}^{H}-\tau^{\prime} \mathbf{h}_{k} \boldsymbol{\Gamma} \mathbf{h}_{k}^{H}-\tau^{\prime} \mathbf{h}_{k} \mathbf{Z} \mathbf{h}_{k}^{H}-\xi \tau^{\prime} \geq 0, \forall k \in \mathcal{K}, \\
& \operatorname{Tr}(\mathbf{\Phi}+\boldsymbol{\Gamma}+\mathbf{Z}) \leq P \xi, & \boldsymbol{\Phi} \succeq \mathbf{0}, \boldsymbol{\Gamma} \succeq \mathbf{0}, \mathbf{Z} \succeq \mathbf{0},
\end{array}
$$

The optimality of transmit beamforming
Proposition 1: The optimal transmit covariance matrix of the confidential message, $\mathbf{Q}_{c}{ }^{*}$, has a rank equal to 1 .

Proof: It suffices to prove the optimal \mathbf{Q}_{c} to (4) is of rank one, for any given α.

$$
\eta\left(\alpha, \tau^{\prime}\right)=\max _{\mathbf{Q}_{0}, \mathbf{Q}_{a}, \mathbf{Q}_{c}} \frac{1+\mathbf{h}_{1}\left(\mathbf{Q}_{c}+\mathbf{Q}_{a}\right) \mathbf{h}_{1}^{H}}{\alpha\left(1+\mathbf{h}_{1} \mathbf{Q}_{a} \mathbf{h}_{1}^{H}\right)}
$$

Recall (4)

$$
\text { s.t. } \quad(\alpha-1)\left(1+\mathbf{h}_{k} \mathbf{Q}_{a} \mathbf{h}_{k}^{H}\right)-\mathbf{h}_{k} \mathbf{Q}_{c} \mathbf{h}_{k}^{H} \geq 0, \forall k \in \mathcal{K}_{e},
$$

$$
\begin{aligned}
& \mathbf{h}_{k} \mathbf{Q}_{0} \mathbf{h}_{k}^{H}-\tau^{\prime} \mathbf{h}_{k} \mathbf{Q}_{a} \mathbf{h}_{k}^{H}-\tau^{\prime} \mathbf{h}_{k} \mathbf{Q}_{c} \mathbf{h}_{k}^{H}-\tau^{\prime} \geq 0, \forall k \in \mathcal{K}, \\
& \operatorname{Tr}\left(\mathbf{Q}_{0}+\mathbf{Q}_{a}+\mathbf{Q}_{c}\right) \leq P \\
& \mathbf{Q}_{0} \succeq \mathbf{0}, \mathbf{Q}_{a} \succeq \mathbf{0}, \mathbf{Q}_{c} \succeq \mathbf{0}
\end{aligned}
$$

Optimal solution

$$
\left(\overline{\mathbf{Q}}_{0}, \overline{\mathbf{Q}}_{c}, \overline{\mathbf{Q}}_{a}\right)
$$

The optimality of transmit beamforming

Step 1: We prove (4) has identical solutions to a power minimization problem (6).

$$
\begin{align*}
& \min _{\mathbf{Q}_{0}, \mathbf{Q}_{a}, \mathbf{Q}_{c}} \operatorname{Tr}\left(\mathbf{Q}_{0}+\mathbf{Q}_{a}+\mathbf{Q}_{c}\right) \\
& \text { s.t. } \quad \log \left(\frac{1+\mathbf{h}_{1}\left(\mathbf{Q}_{c}+\mathbf{Q}_{a}\right) \mathbf{h}_{1}^{H}}{\alpha\left(1+\mathbf{h}_{1} \mathbf{Q}_{a} \mathbf{h}_{1}^{H}\right)}\right) \geq \bar{R}_{\alpha}, \quad \begin{array}{c}
\text { The optimal } \\
\text { value of (4) }
\end{array} \\
& \quad(\alpha-1)\left(1+\mathbf{h}_{k} \mathbf{Q}_{a} \mathbf{h}_{k}^{H}\right)-\mathbf{h}_{k} \mathbf{Q}_{c} \mathbf{h}_{k}^{H} \geq 0, \forall k \in \mathcal{K}_{e}, \tag{6}
\end{align*}
$$

Same constraints as (4)

$$
\mathbf{h}_{k} \mathbf{Q}_{0} \mathbf{h}_{k}^{H}-\tau^{\prime} \mathbf{h}_{k} \mathbf{Q}_{a} \mathbf{h}_{k}^{H}-\tau^{\prime} \mathbf{h}_{k} \mathbf{Q}_{c} \mathbf{h}_{k}^{H}-\tau^{\prime} \geq 0, \forall k \in \mathcal{K},
$$

$$
\mathbf{Q}_{0} \succeq \mathbf{0}, \mathbf{Q}_{a} \succeq \mathbf{0}, \mathbf{Q}_{c} \succeq \mathbf{0}
$$

Optimal solution

$$
\left(\tilde{\mathbf{Q}}_{0}, \tilde{\mathbf{Q}}_{c}, \tilde{\mathbf{Q}}_{a}\right)
$$

The optimality of transmit beamforming

Some quick implications

The definition of \bar{R}_{α}

$$
\begin{equation*}
\longmapsto \log \left(\frac{1+\mathbf{h}_{1}\left(\overline{\mathbf{Q}}_{c}+\overline{\mathbf{Q}}_{a}\right) \mathbf{h}_{1}^{H}}{\alpha\left(1+\mathbf{h}_{1} \overline{\mathbf{Q}}_{a} \mathbf{h}_{1}^{H}\right)}\right)=\bar{R}_{\alpha}, \tag{7}
\end{equation*}
$$

\longrightarrow The feasibility of $\left(\overline{\mathbf{Q}}_{0}, \overline{\mathbf{Q}}_{c}, \overline{\mathbf{Q}}_{a}\right)$ to (6)
$\longrightarrow \operatorname{Tr}\left(\tilde{\mathbf{Q}}_{0}+\tilde{\mathbf{Q}}_{a}+\tilde{\mathbf{Q}}_{c}\right) \leq \operatorname{Tr}\left(\overline{\mathbf{Q}}_{0}+\overline{\mathbf{Q}}_{a}+\overline{\mathbf{Q}}_{c}\right) \leq P$,
\longrightarrow The feasibility of $\left(\tilde{\mathbf{Q}}_{0}, \tilde{\mathbf{Q}}_{c}, \tilde{\mathbf{Q}}_{a}\right)$ to (6)
$\longrightarrow \log \left(\frac{1+\mathbf{h}_{1}\left(\tilde{\mathbf{Q}}_{c}+\tilde{\mathbf{Q}}_{a}\right) \mathbf{h}_{1}^{H}}{\alpha\left(1+\mathbf{h}_{1} \tilde{\mathbf{Q}}_{a} \mathbf{h}_{1}^{H}\right)}\right) \leq \bar{R}_{\alpha}, \quad$ From (6) $\log \left(\frac{1+\mathbf{h}_{1}\left(\tilde{\mathbf{Q}}_{c}+\tilde{\mathbf{Q}}_{a}\right) \mathbf{h}_{1}^{H}}{\alpha\left(1+\mathbf{h}_{1} \tilde{\mathbf{Q}}_{a} \mathbf{h}_{1}^{H}\right)}\right) \geq \bar{R}_{\alpha}$,
$\longrightarrow \log \left(\frac{1+\mathbf{h}_{1}\left(\tilde{\mathbf{Q}}_{c}+\tilde{\mathbf{Q}}_{a}\right) \mathbf{h}_{1}^{H}}{\alpha\left(1+\mathbf{h}_{1} \tilde{\mathbf{Q}}_{a} \mathbf{h}_{1}^{H}\right)}\right)=\bar{R}_{\alpha}$,
The optimality of $\left(\tilde{\mathbf{Q}}_{0}, \tilde{\mathbf{Q}}_{c}, \tilde{\mathbf{Q}}_{a}\right)$ to (4)

The optimality of transmit beamforming
The Lagrangian associated with (7)

$$
\log \left(\frac{1+\mathbf{h}_{1}\left(\mathbf{Q}_{c}+\mathbf{Q}_{a}\right) \mathbf{h}_{1}^{H}}{\alpha\left(1+\mathbf{h}_{1} \mathbf{Q}_{a} \mathbf{h}_{1}^{H}\right)}\right) \geq \bar{R}_{\alpha} \quad \mu \triangleq 1-\alpha 2^{\bar{R}_{\alpha}}
$$

$$
L\left(\mathbf{Q}_{0}, \mathbf{Q}_{a}, \mathbf{Q}_{c}, \lambda, \boldsymbol{\eta}, \boldsymbol{\sigma}, \mathbf{A}, \mathbf{B}, \mathbf{C}\right)=\operatorname{Tr}\left(\mathbf{Q}_{0}+\mathbf{Q}_{a}+\mathbf{Q}_{c}\right)-\lambda\left[\mathbf{h}_{1}\left(\mathbf{Q}_{c}+\mu \mathbf{Q}_{a}\right) \mathbf{h}_{1}^{H}+\mu\right]-
$$

$$
\begin{align*}
& \sum_{k=2}^{K} \eta_{k}\left[(\alpha-1)\left(1+\mathbf{h}_{k} \mathbf{Q}_{a} \mathbf{h}_{k}^{H}\right)-\mathbf{h}_{k} \mathbf{Q}_{c} \mathbf{h}_{k}^{H}\right]- \tag{8}\\
& \sum_{k=1}^{K} \sigma_{k}\left[\mathbf{h}_{k} \mathbf{Q}_{0} \mathbf{h}_{k}^{H}-\tau^{\prime} \mathbf{h}_{k} \mathbf{Q}_{a} \mathbf{h}_{k}^{H}-\tau^{\prime} \mathbf{h}_{k} \mathbf{Q}_{c} \mathbf{h}_{k}^{H}-\tau^{\prime}\right]- \\
& \operatorname{Tr}\left(\mathbf{A Q}_{a}\right)-\operatorname{Tr}\left(\mathbf{B} \mathbf{Q}_{0}\right)-\operatorname{Tr}\left(\mathbf{C} \mathbf{Q}_{c}\right)
\end{align*}
$$

$$
\begin{aligned}
& \lambda>0, \\
& \mathbf{\eta} \triangleq\left[\eta_{2}, \eta_{3}, \ldots, \eta_{K}\right] \succeq \mathbf{0}, \\
& \mathbf{\sigma} \triangleq\left[\sigma_{1}, \sigma_{2}, \ldots, \sigma_{K}\right] \succeq \mathbf{0}, \\
& \mathbf{A} \succeq \mathbf{0}, \mathbf{B} \succeq \mathbf{0}, \mathbf{C} \succeq \mathbf{0}
\end{aligned}
$$

The optimality of transmit beamforming

Karush-Kuhn-Tucker (KKT) conditions of (6)

$$
\begin{align*}
\frac{\partial L}{\partial \tilde{\mathbf{Q}}_{c}}=\mathbf{I}-\lambda \mathbf{h}_{1}^{H} \mathbf{h}_{1}+\sum_{k=2}^{K} \eta_{k} \mathbf{h}_{k}^{H} \mathbf{h}_{k}+\tau^{\prime} \sum_{k=1}^{K} \sigma_{k} \mathbf{h}_{k}^{H} \mathbf{h}_{k}-\mathbf{C} & =\mathbf{0}, \tag{9.1}\\
\mathbf{C} \tilde{\mathbf{Q}}_{c} & =\mathbf{0}, \tag{9.2}\\
\tilde{\mathbf{Q}}_{c} & \geq \mathbf{0}, \tag{9.3}\\
\eta_{k} & \geq 0, \forall k \in \mathcal{K}_{e}, \tag{9.4}\\
\sigma_{k} & \geq 0, \forall k \in \mathcal{K} . \tag{9.5}
\end{align*}
$$

- (9.1), (9.4) and (9.5) are actually the constraints of the dual problem of (6)
- (9.3) is actually the inequality constraint of (6)
- (9.2) is the complementary slackness

The optimality of transmit beamforming
Postmultiplying (9.1) by $\tilde{\mathbf{Q}}_{c}$ and making use of (9.2) yield

$$
\begin{equation*}
\left(\mathbf{I}+\sum_{k=2}^{K} \eta_{k} \mathbf{h}_{k}^{H} \mathbf{h}_{k}+\tau^{\prime} \sum_{k=1}^{K} \sigma_{k} \mathbf{h}_{k}^{H} \mathbf{h}_{k}\right) \tilde{\mathbf{Q}}_{c}=\lambda \mathbf{h}_{1}^{H} \mathbf{h}_{1} \tilde{\mathbf{Q}}_{c}, \tag{10}
\end{equation*}
$$

(9.3) and (9.4) imply

$$
\begin{align*}
& \mathbf{I}+\sum_{k=2}^{K} \eta_{k} \mathbf{h}_{k}^{H} \mathbf{h}_{k}+\tau^{\prime} \sum_{k=1}^{K} \sigma_{k} \mathbf{h}_{k}^{H} \mathbf{h}_{k} \succ \mathbf{0} \\
& \operatorname{rank}\left(\left(\mathbf{I}+\sum_{k=2}^{K} \eta_{k} \mathbf{h}_{k}^{H} \mathbf{h}_{k}+\tau^{\prime} \sum_{k=1}^{K} \sigma_{k} \mathbf{h}_{k}^{H} \mathbf{h}_{k}\right) \tilde{\mathbf{Q}}_{c}\right) \tag{11}\\
&= \operatorname{rank}\left(\tilde{\mathbf{Q}}_{c}\right)=\operatorname{rank}\left(\lambda \mathbf{h}_{1}^{H} \mathbf{h}_{1} \tilde{\mathbf{Q}}_{c}\right) \leq 1,
\end{align*}
$$

Eliminating the trivial solution, we have completed our proof.

The optimality of transmit beamforming

How about the multicast message and AN?
Proposition 1: If there only exists a single unauthorized receiver, then

$$
\operatorname{rank}\left(\mathbf{Q}_{0}^{*}\right)=1, \operatorname{rank}\left(\mathbf{Q}_{a}^{*}\right) \leq 1
$$

Proof: The power minimization problem (6) is a solvable separable SDP problem. A general form of separable SDP problem:

$$
\begin{aligned}
& \min _{\mathbf{X}_{1}, \mathbf{X}_{2}, \ldots \mathbf{X}_{L}} \sum_{l=1}^{L} \operatorname{Tr}\left(\mathbf{C}_{l} \mathbf{X}_{l}\right) \\
& \text { s.t } \quad \sum_{l=1}^{L} \operatorname{Tr}\left(\mathbf{A}_{m l} \mathbf{X}_{l}\right) \unrhd_{m} b_{m}, m=1,2, \ldots, M \\
& \quad \mathbf{X}_{l} \succeq \mathbf{0}, l=1,2, \ldots, L .
\end{aligned}
$$

- C_{l} and $A_{m l}$ are Hermitian matrices (not necessarily positive semidefinite)
- $\boldsymbol{b}_{\boldsymbol{m}}$ is a real number, and $\unrhd_{m} \in\{\leq, \geq,=\}$
- $X_{l}, l=1,2, \ldots, L$, are Hermitian matrices
- It is immediate to verify that (6) is a separable SDP.

The optimality of transmit beamforming

For a solvable SDP problem, the following inequality holds. [Theorem 3.2,5]

$$
\operatorname{rank}^{2}\left(\mathbf{Q}_{0}^{*}\right)+\operatorname{rank}^{2}\left(\mathbf{Q}_{a}^{*}\right)+\operatorname{rank}^{2}\left(\mathbf{Q}_{c}^{*}\right) \leq M,
$$

M denotes the number of linear equality and inequality in the optimization problem, which is $2 K$ in (6).
When $K=2$, incorporating $\operatorname{rank}\left(\mathbf{Q}_{c}^{*}\right)=1$ yields

$$
\operatorname{rank}\left(\mathbf{Q}_{0}^{*}\right) \leq 1, \operatorname{rank}\left(\mathbf{Q}_{a}^{*}\right) \leq 1
$$

[5] Y. Huang and D. Palomar, "Rank-constrained separable semidefinite programming with applications to optimal beamforming," IEEE Trans. Signal Process., vol. 58, no. 2, pp. 664-678, Sep. 2010.

Numerical Results

Some observations from Fig. 2

Fig.2. Secrecy rate regions with and without AN

When $P=20 \mathrm{~W}, K=4$

- Secrecy rates with AN are mostly higher than those without AN.
- With the increasing demand for QoMS, the two curves tend to be coincident.
When $P=10 \mathrm{~W}, K=4$
- The gap between these two strategies dramatically reduced.
- Possible reason: In order to guarantee the QoMS, AN must decrease to reduce the interference at all receivers
When $P=20 \mathrm{~W}, K=2$
- AN does not offer any secrecy gains.
- Reason: The unauthorized receivers pose less security threat to the system.

