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Parameter-free survival distribution estimation

Survival distribution

F̄X (x) =

∫ ∞

x
fX (u)du

a.k.a. the cumulative residual distribution or the tail distribution.

and its empirical estimation

F̄N(x) =
1

N

N
∑

n=1

I(un > x)

where I(·) denotes the indicator function (I(A) is 1 if event A

occurs and is 0 otherwise).
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Survival estimator is parameter-free

PDF estimator (Parzen window method)

p̂X (x) =
1

N

N
∑

n=1

k(x , un)
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Definition of CSIP

Cross Survival Information Potential (CSIP)

For two random variables X and Y (both in R+),

Sc(X , Y ) =

∫

R+

F̄X (x)F̄Y (x)dx .

Joint and marginal CSIPs

Let (X , Y ) and XY denote F̄(X ,Y )(X , Y ) and F̄X (X )F̄Y (Y ),
respectively.

Sc ((X ,Y ),(X ,Y )) =

∫

R+

F̄(X ,Y )(x , y)F̄(X ,Y )(x , y)dxdy ,

Sc((X , Y ), XY ) =

∫

R+

F̄(X ,Y )(x , y)F̄X (x)F̄Y (y)dxdy ,

Sc(XY , XY ) =

∫

R+

F̄X (x)F̄Y (y)× F̄X (x)F̄Y (y)dxdy .
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Definition of SCS-MI

Survival Cauchy-Schwartz mutual information (SCS-MI) for two
random variables is defined to evaluate the Cauchy-Schwartz
divergence between the joint survival function F̄(X ,Y )(X , Y ) and

the product of the marginal survival functions F̄X (X ) F̄Y (Y ):

SCS-MI

ISCS (X ; Y )
def
= − log Sc ((X ,Y ),XY )√

Sc ((X ,Y ),(X ,Y ))
√

Sc (XY ,XY )
,
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CSIPs for multiple variables

Let (X 1, . . . , X D) denote the joint survival distribution
F̄(X 1,...,XD)(X

1, . . . , X D) and X 1 · · ·X D denote the product of

marginal survival distributions F̄X 1(X 1) · · · F̄XD(X D).

Sc((X1
,...,XD ),(X1

,...,XD )) =
∫ [

F̄
(X1,...,XD )

(x1,...,xD)
]2

dx1···dxD

Sc(X1···XD
,X1···XD) =

∫ [

F̄
X1 (x1)×···×F̄

XD (xD)
]2

dx1···dxD

Sc((X1
,...,XD ),X1···XD) =

∫ [

F̄
(X1,...,XD )

(x1,...,xD)
]

×
[

F̄
X1 (x1)×···×F̄

XD (xD)
]

dx1···dxD,



SCS-MIs for multiple variables

Let (X 1, . . . , X D) denote the joint survival distribution
F̄(X 1,...,XD)(X

1, . . . , X D) and X 1 · · ·X D denote the product of

marginal survival distributions F̄X 1(X 1) · · · F̄XD(X D).

SCSM-MI

ISCSM

(

X 1; . . . ; X D
) def

=

− log
Sc((X1

,...,XD),X1···XD)√
Sc ((X1,...,XD ),(X1,...,XD ))

√
Sc (X1···XD ,X1···XD )

,



SCS-MI is a valid Statistical Independence measure

Proposition 1

ISCS (X ; Y ) ≥ 0 and the equality holds if and only if X and Y are
mutually independent.

Proposition 2

ISCSM

(

X 1; . . . ; X D
)

≥ 0 and the equality holds if and only if

X 1, . . . , X D are mutually independent.
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The estimator of SCSM-MI is parameter-free

SCSM-MI estimator

ÎSCSM

(

X 1; . . . ; X D
)

=

− log

∑N
n,α1,α2,...,αD=1 min(X 1

n , X 1
α1

)× · · · ×min(X D
n , X D

αD
)

√

∑N
n,m=1

(

∏D
d=1 min(X d

n , X d
m)
)

√

∏D
d=1

(

∑N
n,m=1 min(X d

n , X d
m)
)

.



Proposed ICA algorithm based on SCS-MI estimator (1)

ICA model

Consider the estimation of D latent variables from a N × D

observation matrix X representing a set of D variables each with N

observations. The observations are assumed with linear but
unknown combinations of the latent variables. The estimation goal
is to find an D × D matrix W to recover the latent signals by

Ŝ = XW,

where Ŝ is the recovered signal matrix with each column being
estimations for one of the D latent variables.



Proposed ICA algorithm based on SCS-MI estimator (2)

ICA algorithm

W
∗ = arg min

W
ÎSCSM

(

Ŝ1; . . . ; ŜD
)

where Ŝ1, . . . , ŜD denote the D estimated variables.



Proposed ICA algorithm based on SCS-MI estimator (3)

While tol and iteration k are within valid range

1 θ
(k+1)
u = θ

(k)
u − η∇θu

ÎSCSM

(

Ŝ1; . . . ; ŜD
)‡

2 W(k) ← ∏D−1
i=1

∏D
j=i+1 Gij(θ)

3 Ŝ(k) ← X×W(k)

4 tol ← ÎSCSM(Ŝ(k) + t)

5 θ
(k)
u = θ

(k+1)
u

Return W∗, (Ŝ = XW∗)



Experimental setup

Amari-index is used for de-mixing matrix quality assessment which
was invariant to permutation and scaling of the columns of two
compared matrices. The adopted Amari-index was defined as

Amari-index(W∗, M) =

1

2D

D
∑

i=1

(

∑D
j=1 |rij |

maxj |rij |
− 1

)

+
1

2D

D
∑

j=1

(

∑D
i=1 |rij |

maxi |rij |
− 1

)

where rij = (W∗ ×M)ij and W∗ denotes the recovered de-mixing
matrix. The Amari-index is equal to zero when two matrices
represent the same components.



Experimental results (1)
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Experimental results (2)
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Conclusion

1 A probability survival distribution based Cauchy-Schwartz
information measure for multiple variables is proposed

2 Empirical estimation of survival distribution is parameter-free
which is inherited by the estimation of the new information
measure.

3 This measure is a valid statistical independence measure and is
adopted as an objective function to develop an ICA algorithm

4 This work shows promising potential regarding the use of
survival distribution based information measure for ICA.
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