

Pilot-aided Direction of Arrival Estimation for mmWave Cellular Systems

Mahbuba Sheba Ullah Dr. Ahmed Tewfik University of Texas at Austin March 23, 2016

Outline

- Motivation
- Prior work
- Pilot assisted, sub-sample based MUSIC algorithm
- Simulation results

Motivation

Problem formulation:

Concurrent DoA estimation of mmWave primary and secondary beams.

- Dynamic mmWave channel is susceptible to blockage
- 5G requires ultra low latency

5G Requirements:

- Bandwidth
- Latency
- Energy efficiency
- Reliability

Solution: All-digital

Challenges:

Prior work & challenges

Sparse channel model

mmWave sparse channel model can reduce complexity.

Assumptions

- Number of multipath components, *p* is small.
- All *p* multi-paths have distinct delays.
- Maximum delay-spread is a known parameter and is small for mmWave propagation channel.

Subspace based DoA estimation

Channel Model:

 $\mathbf{y}(t) = \mathbf{AB}\mathbf{x}(t) + \mathbf{n}(t)$

Covariance matrices:

Accurate estimation requires

(p+1) high speed ADCs

 $\mathbf{R}_{yy} = E\left\{\mathbf{y}(t)\mathbf{y}(t)^{H}\right\} = \mathbf{A}\mathbf{B}\mathbf{P}\mathbf{B}^{H}\mathbf{A}^{H} + \sigma^{2}\mathbf{I}$ $\mathbf{P} = E\left\{\mathbf{x}(t)\mathbf{x}(t)^{H}\right\}$

Decomposed into *p* dimensional **signal-subspace** and (*m*-*p*) dimensional **noise subspace**.

The covariance matrix **P** is non-singular if:

• The propagation delays are distinct.

Pilot signals have good autocorrelation properties.

Large number (p+1) of **RF chains with high speed ADC**s are impractical to implement in terms of cost and power consumption.

Pilot assisted sub-sample based MUSIC-like algorithms

Proposed pilot design

Energy Efficient (constant amplitude) Zero circular correlation (N,D) : positive integersD : decimation factorND > delay_spread

Zadoff Chu (ZC) sequence (L=ND²)

Decimated by *D*, **subsequence**'s properties:

- I. Zero circular cross-correlations.
- **II. Zero circular auto-correlation** within *N* lags.

Proof outline of property I & II

Proof outline

The *ND*-point DFT of the subsequence with phase offsets j=0. (Also the DFT of the third term)

The *ND*-point DFT of another subsequence which is a circular shifted version the DFT of the third term. Even length ZC example, N=48, D=10, u=17, => L=4800 To the probability of the probabili

An Example of the *ND*-point DFT of the subsequences with phase offsets, *j*=0,...,*D*-1

Example shows:

- I. Subsequences have zero circular cross-correlations.
- II. Each subsequence have **zero circular autocorrelations** within *N* lags.

Algorithm description

Simulation Results

(Pilot = ZC(4096,11), decimation factor = 16)

Conclusion

- Low complexity all digital solution.
 - Eliminates high speed ADC without performance degradation.
- Sub-Nyquist rate sampling using ZC based pilot design.
- Reduced antenna size requirements.

