

School of Electrical and Electronic Engineering

MOTIVATIONS

With the ubiquitous adoption of Internet of Things (IoT) devices like on-body sensors, smart home appliances, and smart phones, massive amounts of data are being collected by service providers.

🛑 = Complete Inertial Measurement Unit

Fig. 1: Information privacy in on-body sensor network (UCI dataset).

The observed data can be exploited for

- Public information: exercise logs for health monitoring,
- Private information: users' private behaviors, habits, emotion and medical condition,

PROBLEM FORMULATION

With training samples $(\mathbf{X}_i, p_i, q_i)_{i=1}^l$, an optimization problem is proposed to find $\mathbf{G} = {\{\mathbf{G}^m\}_{m=1}^{M} \text{ so as to}}$

- minimize the regularized empirical risk of detecting public hypothesis *p*,
- keep the regularized empirical risk of detecting *q* above a given privacy threshold θ .

$$\min_{\mathbf{G}\in\mathcal{G},\mathbf{w}_{\alpha}} \frac{1}{l} \sum_{i=1}^{l} \phi(p_{i} \langle \mathbf{w}_{\alpha}, \Phi(\mathbf{Z}_{i}) \rangle_{\mathcal{H}}) + \frac{\lambda_{\alpha}}{2} \|\mathbf{w}_{\alpha}\|_{2}^{2},$$
s.t.
$$\min_{\mathbf{w}_{\beta}} \sum_{k \in \{-1,1\}} \frac{1}{2|\mathcal{S}_{k}|} \sum_{i \in \mathcal{S}_{k}} \phi(q_{i} \langle \mathbf{w}_{\beta}, \Phi(\mathbf{Z}_{i}) \rangle_{\mathcal{H}}) + \frac{\lambda_{\beta}}{2} \|\mathbf{w}_{\beta}\|_{2}^{2} \ge \theta$$

where $\phi(\cdot)$ is a convex loss function, $\Phi(\cdot)$ is a feature map, S_k with $k \in \{-1, 1\}$ contains the indexes of the training sample with label $q_i = \{-1, 1\}$, respectively, \mathbf{w}_{α} and \mathbf{w}_{β} are the fusion center decision rules for the public and private hypothesis, respectively.

MULTILAYER SENSOR NETWORK FOR INFORMATION PRIVACY XIN HE, WEE PENG TAY

METHODOLOGY

Fig. 2: Information privacy using a multilayer network.

After a repeated linear and nonlinear distortion of the observed data, the distorted data at the fusion center is

$$\mathbf{Z}(\mathbf{X}) = \mathbf{G}^{M} h(\mathbf{G}^{M-1} h(\cdots h(\mathbf{G}^{1} \mathbf{X}))).$$

The target of the weighting matrices $\{\mathbf{G}^m\}_{m=1}^M$ is to:

- Extract the public hypothesis related feature.
- Distort the privacy hypothesis related feature.

THE PROPOSED ALGORITHM

. Finding the threshold θ :

In the dual formulation, the best empirical risk of detecting the private hypothesis q under the worst case **G** is

$$\max_{\mathbf{G}\in\mathcal{G},\boldsymbol{\beta}} - \sum_{k\in\{-1,1\}} \frac{1}{2|\mathcal{S}_k|} \sum_{i\in\mathcal{S}_k} \phi^*(-2|\mathcal{S}_k|\beta_i) - \frac{1}{2\lambda_{\beta}} (\mathbf{q}\circ\boldsymbol{\beta})^T \mathbf{K}(\mathbf{G},\mathbf{X}) (\mathbf{q}\circ\boldsymbol{\beta})$$

Let the objective value be θ^* , then we chose $\theta = p\theta^*$, $p \in [0, 1].$

- 2. Optimizing the weighting matrices:
 - (a) Without constraint on $\{\mathbf{G}^m\}_{m=1}^M$: gradient descent with line search such that the constraint is satisfied.
 - (b) Positive semi-definite constraints on $\{\mathbf{G}^m\}_{m=1}^M$: modified mirror descent method to obtain a closedform solution for gradient updating.

Fig. 4: The impact of the proportion *p* on public and private hypothesis test.

RESULT ON DALLAS ACTION RECOGNITION

Sensors	Inertial measurement+Kinetic camera
Public hypothesis	Boxing action existence ?
Private hypothesis	Baseball action existence ?

RESULT ON UCI ACTIVITY RECOGNITION

Fig. 3: The UCI OPPORTUNITY activity recording room.

Fig. 6: Image experiment. The presence or absence of a gun and cash are the public and private hypothesis, respectively.

Sensors	Inertial measurement
Public hypothesis	open or close a door ?
Private hypothesis	walking or standing ?

• Note: 25% is the worst error rate for this four action setting.

REAL IMAGE EXPERIMENT

Fig. 7: One type of gun and cash.

Fig. 8: Three types of gun and cash.

• Conclusion: A proper layer number *M* should be chosen to match the multilayer model and the dataset.