
- VOTE snore sounds (SnS) are respectively corresponding to
- Issues:

- tio, crest factor, F0

Database

- Provider: Klinikum rechts der Isar, Technische Universität München
- **Subjects**: 24 (all are males), 2 groups, 117 episodes segmented into basic instances (200 ms), subject-independent 2-fold cross validation
- **Sleep Type**: drug-induced sleep

VOTE Positions:

Data Collection:

	mean	std	range
Age [years]	46.2	13.2	26 – 72
$BMI\left[kg/m^2 ight]$	26.8	2.9	18.9 – 31.5
AHI [events/h]	20.4	10.7	6.2 – 45.6

V O T E Group 1 376 132 18 125 651 Group 2 434 111 46 141 732 810 234 64 266 1 383 Total

The scalogram indicates the energy percentage for each wavelet coefficient (the wavelet function here is 'db10', and the decomposition level is 6.

Wavelet Packet Transform (WPT) Features

Low-Level Descriptors (LLDs): Proposed by Khushaba et al., 2011.^a

$$E_{V_{j,k}} = \sqrt{\frac{\sum_{n} (\mathbf{w}_{j,k,n})^2}{N_k}},$$

where $\mathbf{w}_{i,k}$ represents the wavelet-packet transform coefficients evaluated from the signal at the subspace $V_{i,k}$, and N_k is the number of wavelet coefficients in the k-th subband; therefore, $E_{V_{ik}}$ denotes the normalised bank filter energy in k-th subband with the j-th decomposition level. Furthermore, the subband energy percentage is defined as:

$$E_{V_j} = \frac{\sum_k \sum_n (\mathbf{w}_{j,k,n})^2}{\sum_{j=1}^{J_{max}} \sum_k \sum_n (\mathbf{w}_{j,k,n})^2}$$

Statistical Functions:

LLDs (155)

_	
-	E _{V_{j,k} (127)}
	$E_{V_{j}}$ (7)
	Variance of E_{V_j} (7)
	Waveform length of E_{V_i} (
	Entropy of E_{V_j} (7)

Statistical functionals (9)

max, min, mean, range, standard deviation, slope, bias (linear (7) regression approximation) skewness, kurtosis

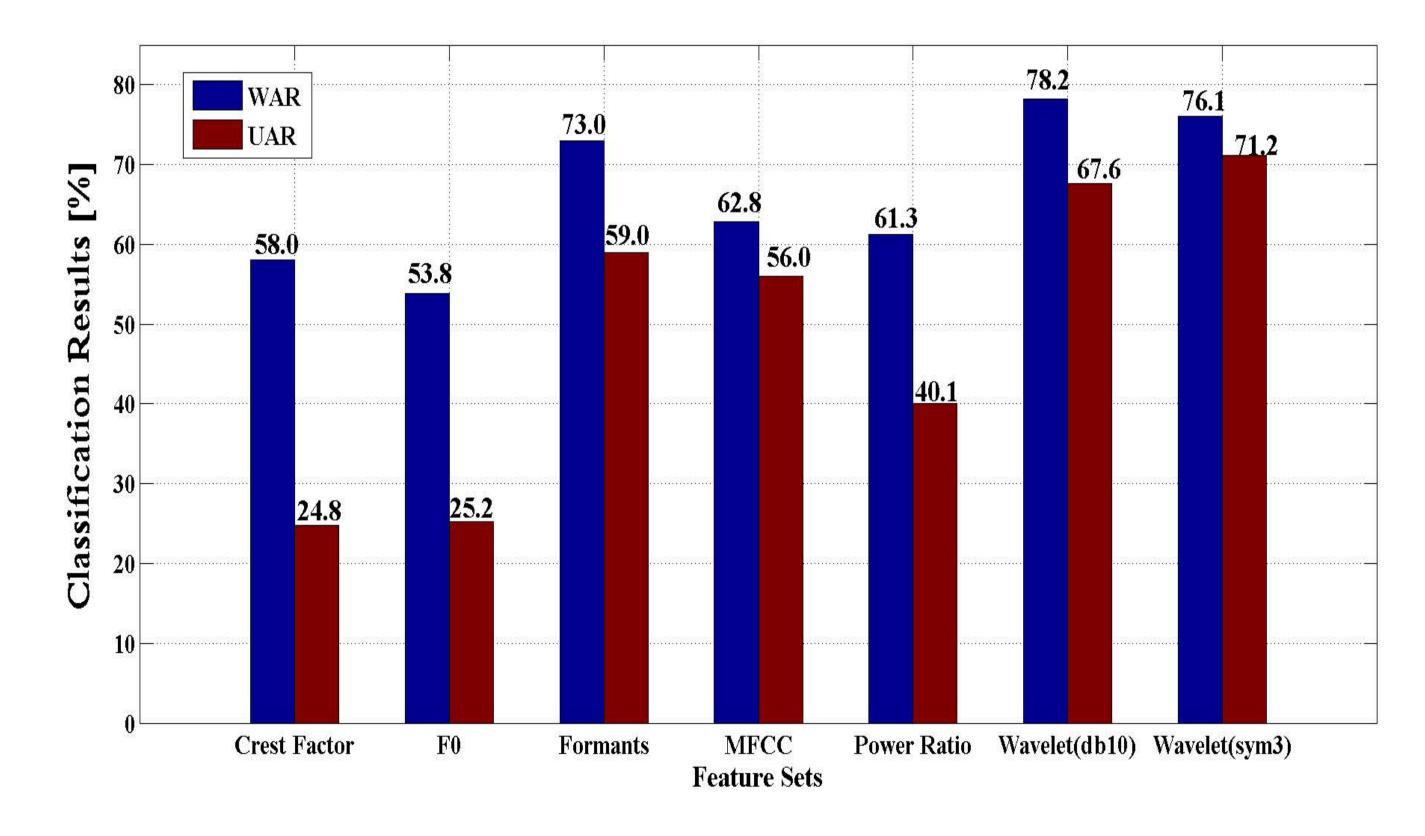
^aR.N.Khushaba, S.Kodagoda, S.Lal, and G.Dissanayake, "Driver drowsiness classification using fuzzy waveletpacketbased feature-extraction algorithm", IEEE Transactions on Biomedical Engineering, vol. 58, no. 1, pp. 121–131, 2011.

WAVELET FEATURES FOR CLASSIFICATION OF VOTE SNORE SOUNDS

Kun Qian¹, Christoph Janott², Zixing Zhang⁵, Clemens Heiser³, Björn Schuller^{4,5} ¹MISP group, MMK, Technische Universität München, Germany ²Institute for Medical Engineering, Technische Universität München, Germany ³Department of Otorhinolaryngology/Head and Neck Surgery, Klinikum rechts der Isar, Technische Universität München, Germany ⁴Machine Learning Group, Imperial College London, UK ⁵Chair of Complex & Intelligent Systems, University of Passau, Germany

(1)

(2)


Experiments and Results

- Classifier: Support Vector Machines
- Evaluation: WAR (weighted average recall), UAR (unweighted average recall)
- Subject-independent two-fold cross validation

Maximun WAR and UAR of Different Wavelet Functions

Family	Optimum	WAR _{max} [%]	UAR _{max} [%]
BiorSplines	bior3.5	76.8	70.1
Coiflets	coif1, coif5	77.0 (coif5)	68.9 (coif1)
Daubechies	db3, db10	78.2 (db10)	71.1 (db3)
Dmeyer	dmey	74.9	68.2
Haar	haar	66.6	61.0
ReverseBior	rbio1.5	76.4	69.7
Symlets	sym3	76.1	71.2

Comparison With Other Features

(We extract the formants, MFCC, power ratio, crest factor, and F0 from SnS and calculate the statistical values with the same approach as WPT features.)

Conclusion

- WPT features achieve excellent performance: 78.2 % WAR and 71.2 % UAR
- WPT features outperform other features: formants, MFCC, power ratio, crest factor, and F0
- Future work: collection of much more data, imbalanced data problem, deep learning model

