Extensions of Semidefinite Programming Methods for Atomic Decomposition

Hsiao-Han Chao

1-norm Regularization
Minimize $f(y)+\sum_{k=1}^{r}\left|x_{k}\right|$
Subject to $y=\sum_{k=1}^{r} x_{k} a_{k}$

$$
a_{k} \in \mathcal{D}, k=\mathbf{1}, \ldots, r
$$

- variables: $y, a_{k} \in \mathbb{C}^{n}, x_{k} \in \mathbb{C}, r$
- f : convex (penalty or indicator)

- D: set of atoms (dictionary)
- extends lasso, (noisy) basis pursuit, etc. to non-finite \mathcal{D}

Matrix Pencil Dictionary

$$
\mathcal{D}=\left\{a \in \mathbb{C}^{n} \mid\|a\|_{2}=\mathbf{1},(\lambda G-F) a=\mathbf{0}, \lambda \in \mathcal{C}\right\}
$$

- $\lambda G-F$ is a $p \times n$ matrix pencil
$-\mathcal{C}$: a segment of a line or circle in the complex plane
- normalizations other than $\|a\|_{2}=1$ are possible
- example: complex exponentials

$$
a=\frac{c}{\sqrt{n}}\left(1, e^{\mathrm{j} \omega}, e^{\mathrm{j} 2 \omega}, \ldots, e^{\mathrm{j}(n-1) \omega}\right), \quad|c|=1
$$

take \mathcal{C} the unit circle, $F=\left[\begin{array}{ll}0 & I_{n-1}\end{array}\right]$, and $G=\left[\begin{array}{ll}I_{n-1} & 0\end{array}\right]$

Set \mathcal{C}

$\mathcal{C}=\left\{\lambda \in \mathbb{C} \cup\{\infty\} \left\lvert\,\left[\begin{array}{l}\lambda \\ 1\end{array}\right]^{H} \Phi\left[\begin{array}{l}\lambda \\ 1\end{array}\right]=0\right.,\left[\begin{array}{l}\lambda \\ 1\end{array}\right]^{H} \Psi\left[\begin{array}{l}\lambda \\ 1\end{array}\right] \leq 0\right\}$

- Φ and Ψ are 2×2 Hermitian matrices with det $\Phi<0$
$\triangleright \mathcal{C}$ includes $\lambda=\infty$ when $\Phi_{11}=0$ and $\Psi_{11} \leq 0$
$\triangleright \mathcal{C}$ is a circle or straight line if $\Psi=0$
- examples:

Lieven Vandenberghe

Structured Low-rank Decomposition
Minimize $f(Y)+\sum_{k=1}^{r}\left\|x_{k}\right\|_{2}$
Subject to $Y=\sum_{k=1}^{r} a_{k} x_{k}^{H}, \quad a_{k} \in \mathcal{D}, k=1, \ldots, r$

- variables: $Y \in \mathbb{C}^{n \times m}, a_{k} \in \mathbb{C}^{n}, x_{k} \in \mathbb{C}^{m}, r$
- equivalent SDP with variables $Y \in \mathbb{C}^{n \times m}, X \in \mathbb{H}^{n}, Z \in \mathbb{H}^{m}$ Min. $f(Y)+(\operatorname{tr} X+\operatorname{tr} Z) / 2$

$$
\begin{array}{ll}
\text { S.t. } & {\left[\begin{array}{cc}
X & Y \\
Y^{H} & Z
\end{array}\right] \succeq 0} \\
& \Phi_{11} F X F^{H}+\Phi_{21} F X G^{H}+\Phi_{12} G X F^{H}+\Phi_{22} G X G^{H}=0 \\
& \Psi_{11} F X F^{H}+\Psi_{21} F X G^{H}+\Psi_{12} G X F^{H}+\Psi_{22} G X G^{H} \preceq 0
\end{array}
$$

Lemma: Conic Decomposition

For $X \succeq 0$ with rank r satisfying the last two constraints in (2)

$$
\Rightarrow \quad X=\sum_{k=1}^{r} \theta_{k} a_{k} a_{k}^{H}, \quad \theta_{1}, \ldots, \theta_{r}>0, \quad a_{1}, \ldots, a_{r} \in \mathcal{D}
$$

- follows from decompositions in the proofs of KYP lemma (PV13) - efficiently computed via SVD and Schur decompositions

Proof of Equivalence

- SDP as relaxation of $(\mathbb{1})$: if a_{k}, x_{k}, r are feasible in $(\mathbb{1})$ then

$$
\left[\begin{array}{cc}
X & Y \\
Y^{H} & Z
\end{array}\right]=\sum_{k=1}^{r}\left\|x_{k}\right\|_{2}\left[\begin{array}{c}
a_{k} \\
x_{k} /\left\|x_{k}\right\|_{2}
\end{array}\right]\left[\begin{array}{c}
a_{k} \\
x_{k} /\left\|x_{k}\right\|_{2}
\end{array}\right]^{H}
$$

is feasible in (2) with the same objective value

- exactness of relaxation: decompose feasible X of rank r as

$$
X=\sum_{k=1}^{r} \theta_{k} a_{k} a_{k}^{H}, \quad \theta_{k}>0, \quad a_{k} \in \mathcal{D}
$$

first constraint in (2) implies there exist x_{k} such that

$$
Y=\sum_{k=1}^{r} a_{k} x_{k}^{H}, \quad Z \succeq \sum_{k=1}^{r} \frac{1}{\theta_{k}} x_{k} x_{k}^{H}, \quad \frac{\operatorname{tr} X+\operatorname{tr} Z}{2} \geq \sum_{k=1}^{r}\left\|x_{k}\right\|_{2}
$$

Department of Electrical Engineering, UCLA suzihchao@ucla.edu, vandenbe@ucla.edu
-d b- o -d o b- b- o -d o

Example: DOA estimation

- sparse linear sensor array on a uniform grid of size $n=50$
- use measurements b_{1}, b_{2} from 2 groups of sensors
- group I_{1} measures $\theta \in \Theta_{1} \cup \Theta_{2}$, and group $I_{2}, \quad \theta \in \Theta_{2} \cup \Theta_{3}$ - can be solved via SDP formulation of:

$$
\begin{array}{ll}
\text { Minimize } & \sum_{j=1}^{3} \sum_{k=1}^{r_{j}}\left|x_{j k}\right| \\
\text { Subject to } y_{j}=\sum_{k=1}^{r_{j}} x_{j k}\left[\begin{array}{c}
1 \\
e^{\mathrm{j} \omega\left(\theta_{j k}\right)} \\
\vdots \\
e^{\mathrm{j}(n-1) \omega\left(\theta_{j k}\right)}
\end{array}\right], \omega(\theta)=\pi \sin \theta \\
\\
& \theta_{j k} \in \Theta_{j}, \quad k=1, \ldots, r_{j}, j=1,2,3 \\
\left(y_{1}+y_{2}\right)_{I_{1}}=b_{1}, \quad\left(y_{2}+y_{3}\right)_{I_{2}}=b_{2}
\end{array}
$$

Figure : DOA estimation with and without interval constraints

- recovery rate against \# of sensors $\left|I_{1}\right|+\left|I_{2}\right|$ - results averaged over 100 instances
- randomly generated magnitudes, I_{1}, I_{2}

[^0]
[^0]: E. J. Candes and C. Fernandez-Grand

 Towards a mathematical theory of super-resolution, 2014
 G. Tang, B. N. Bhaskar, P. Shah, and B. Recht

 Compressed sensing off the grid, 2013
 Z. Yang and L. Xie
 ency recovery via optimization methods, 2014
 Oit-ne-grid line spectrum denoising and est
 K. V. Mishra, M. Cho, A. Kruger, and W. Xu
 Spectral super-resolution with prior knowledge, 2015

 Spectral super-resolutio
 T. Iwasaki and S. Hara
 Generaized KYP lemma: unified
 G. Pipeleers and L. Vandenberghe

 Generaized KYP lemma with real data, 2011

