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3D massive MIMO systems

 Spectral efficiency.

 Spatial diversity.
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Why DOA estimation is important in massive MIMO 

systems?

Traditionally: Completely rely 

on the channel feedback

Alternatively: Due to the limited 

number of paths, 

𝐻 = 𝑓(θ, φ)

𝐻 =
𝐻(1,1) ⋯ 𝐻(1,𝑁)

⋮ ⋱ ⋮
𝐻(𝑀, 1) ⋯ 𝐻(𝑀,𝑁)

𝐻𝑑𝑙 = (𝐻𝑢𝑙 )T

 Traditional and alternative ways



17

DOA estimation algorithm



DOA estimation algorithm

 Unitary Estimation of Signal Parameters via Rotational Invariance 

Techniques (ESPRIT).

18



DOA estimation algorithm

 Unitary Estimation of Signal Parameters via Rotational Invariance 

Techniques (ESPRIT).

 Why unitary ESPRIT?

19



DOA estimation algorithm

 Unitary Estimation of Signal Parameters via Rotational Invariance 

Techniques (ESPRIT).

 Why unitary ESPRIT?

- Other algorithms are either highly computationally intensive, 

such as Multiple Signal Classification  (MUSIC), or not accurate,

such as DFT-based approaches. 

20



DOA estimation algorithm

 Unitary Estimation of Signal Parameters via Rotational Invariance 

Techniques (ESPRIT).

 Why unitary ESPRIT?

- Other algorithms are either highly computationally intensive, 

such as Multiple Signal Classification  (MUSIC), or not accurate,

such as DFT-based approaches. 

- Compared to ESPRIT, unitary ESPRIT processes real-value 

data from start to end. 
21
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Unitary ESPRIT algorithm

 Array structure:

 This property leads to the rotational invariance of signal 

subspaces spanned by the data vectors associated with the 

spatially displaced subarrays [1].

[1] “Introduction to direction of arrival estimation” by Z.Chen ,  G.Gokeda, and Y.Yu

1st subarray

3rd subarray

2nd subarray

4th subarray
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Unitary ESPRIT algorithm steps

1. Received data: forward-backward averaging, then transform to

real-valued.

2. Estimate the signal subspace (SVD of the real-valued data 

matrix or EVD of the covariance matrix).

3. Using LS, solve the shift-invariance equations, which relate the

sub-space of the displaced sub-arrays. 

4. From the eigenvalues of the real-valued matrix obtained in step

3, extract  the DOA information. 
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𝐴 is the array response matrix (𝑀𝑁 × 𝑃).

𝐷 is the complex channel gain matrix (diagonal 𝑃 × 𝑃).

𝐺 is the time-delay matrix (𝑃 × 𝐿𝑉).

𝐴 = 𝑎1, 𝑎2, … , 𝑎𝑃 ∈ 𝐶𝑀𝑁×𝑃
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 By extending to 𝑄 symbol periods, re-arranging the dimensions of

the channel matrix 𝐻 to be 𝑀𝑁×𝑉𝑄 , and taking the DFT, we

have the uplink channel matrix :

𝐻𝑢𝑙 = 𝐴 𝐷 𝐹𝜓

𝐹𝜓 is the phase shift matrix (𝑃 × 𝐿𝐵, 𝐵 < 𝑉)
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DOA estimation error: f𝑙= (𝑎 𝑣𝑙 + Δ𝑣𝑙 ⊗ 𝑎 𝜇𝑙 + Δ𝜇𝑙 )*
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 If Δ𝑣𝑙 = 0 and Δ𝜇𝑙 = 0, the power allocation becomes the 

traditional water-filling  solution.
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