DOA Estimation and Achievable Rate
Analysis for 3D Massive MIMO In
Aeronautical Communication Systems

Mohanad Al-Ibadi*, Lingjia Liu*, John Matyjas®, and Jianzhong (Charlie) Zhang?*

*Electrical Engineering and Computer Science Department, University of Kansas

T Information Directorate, Air Force Research Laboratory
tStandards Research Laboratory, Samsung Research America

GlobalSIP 2015 W
Dec. 14, 2015

1

THE UNIVERSITY OF

KANSAS




Outline

» Motivation
» DOA estimation algorithm
» Channel model
» Contribution:
- MSE characterization.

- Rate analysis.
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3D massive MIMO systems

» Spectral efficiency.

» Spatial diversity.
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» Traditional and alternative ways
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DOA estimation algorithm
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DOA estimation algorithm

» Unitary Estimation of Signal Parameters via Rotational Invariance
Techniques (ESPRIT).
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DOA estimation algorithm

» Unitary Estimation of Signal Parameters via Rotational Invariance
Techniques (ESPRIT).

» Why unitary ESPRIT?
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DOA estimation algorithm

» Unitary Estimation of Signal Parameters via Rotational Invariance
Techniques (ESPRIT).

» Why unitary ESPRIT?
- Other algorithms are either highly computationally intensive,
such as Multiple Signal Classification (MUSIC), or not accurate,

such as DFT-based approaches.
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DOA estimation algorithm

» Unitary Estimation of Signal Parameters via Rotational Invariance
Techniques (ESPRIT).

» Why unitary ESPRIT?

- Other algorithms are either highly computationally intensive,
such as Multiple Signal Classification (MUSIC), or not accurate,
such as DFT-based approaches.

- Compared to ESPRIT, unitary ESPRIT processes real-value

data from start to end.
21
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Unitary ESPRIT algorithm

» Array structure:
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Unitary ESPRIT algorithm

» Array structure:

¥~ 4t subarray

3'd subarray —»|
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1st subarray

¥~ 2nd subarray
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Unitary ESPRIT algorithm

» Array structure:

¥~ 4t subarray

3'd subarray —»|

A\ 4

1st subarray

¥~ 2nd subarray

» This property leads to the rotational invariance of signal
subspaces spanned by the data vectors associated with the
spatially displaced subarrays [1].

[1] “Introduction to direction of arrival estimation” by Z.Chen , G.Gokeda, and Y.Yu 25
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Unitary ESPRIT algorithm steps

1. Received data: forward-backward averaging, then transform to

real-valued.
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Unitary ESPRIT algorithm steps

1. Received data: forward-backward averaging, then transform to

real-valued.
2. Estimate the signal subspace (SVD of the real-valued data

matrix or EVD of the covariance matrix).
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Unitary ESPRIT algorithm steps

1. Received data: forward-backward averaging, then transform to

real-valued.

2. Estimate the signal subspace (SVD of the real-valued data
matrix or EVD of the covariance matrix).

3. Using LS, solve the shift-invariance equations, which relate the

sub-space of the displaced sub-arrays.
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Unitary ESPRIT algorithm steps

1. Received data: forward-backward averaging, then transform to

real-valued.

2. Estimate the signal subspace (SVD of the real-valued data
matrix or EVD of the covariance matrix).

3. Using LS, solve the shift-invariance equations, which relate the
sub-space of the displaced sub-arrays.

4. From the eigenvalues of the real-valued matrix obtained in step

3, extract the DOA information.
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Channel model
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Channel model

Multipath channel
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Channel model
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f=1 a;(t) a(uy) a(v)" g,(t — 7))

37

THE UNIVERSITY OF

KANSAS




Channel model

M x N URA
| Multipath channel
j ]
s GS
(RX)
h(t) = Yo a(t) alp) a(w)" g,(t — 1))
a(u) = [1, el ... ej(M—l)m]T a(v) = [1, vt ... ej(N—l)vl]T
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Channel model

M x N URA

Multipath channel

—> u
=1

GS
(TX) (RX)
h(t) = Y o) a(w) a(w)" gt — 1))
a(u) = [1, el ... ej(M—l)m]T a(v) = [1, vt ... ej(N—l)vl]T
2T 21T
U = TCOS 0, v = TSIH 0, cos ¢;
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Channel model

AC
(TX)

j—b

Multipath channel
H

M x N URA

GS
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» By vector mapping: a;= vec ( a(y;) a(v;))T ) = a(v;) Q a(y;)

40

THE UNIVERSITY OF

KANSAS




Channel model

AC
(TX)

j—b

Multipath channel
H

M x N URA

GS
(RX)

» By vector mapping: a;= vec ( a(y;) a(v;))T ) = a(v;) Q a(y;)

A=laqa,,..,ap]

€ CMNXP
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Channel model

M x N URA

Multipath channel
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GS
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Channel model

M x N URA

Multipath channel

—> "
=1

(TX)

GS
(RX)

» By vector mapping: a;= vec ( a(y;) a(v;))T ) = a(v;) Q a(y;)

A - [al, az, ...,ap] € CMNXP

:> H=ADG

A is the array response matrix (MN X P).
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Channel model

AC
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Multipath channel
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GS
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» By vector mapping: a;= vec ( a(y;) a(v;))T ) = a(v;) Q a(y;)

:> H=ADG

A is the array response matrix (MN X P).

A=laqa,,..,ap]

€ CMNXP

D is the complex channel gain matrix (diagonal P x P).
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Channel model

AC
(TX)

j—b

Multipath channel
H

M x N URA

GS
(RX)

» By vector mapping: a;= vec ( a(y;) a(v;))T ) = a(v;) Q a(y;)

:> H=ADG

A is the array response matrix (MN X P).

A=laqa,,..,ap]

€ CMNXP

D is the complex channel gain matrix (diagonal P x P).

G i1s the time-delay matrix (P X LV).
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Channel model

M x N URA

Multipath channel

—> u
=1

(TX)

» The RX signal in matrix form:
Y=HS+W
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Channel model

M x N URA

Multipath channel

—> "
=1

(TX) €=

» The RX signal in matrix form:

Y=HS+W

» By extending to Q symbol periods, re-arranging the dimensions of
the channel matrix H to be MN XV(Q,and taking the DFT, we
have the uplink channel matrix :
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Channel model

M x N URA

Multipath channel

—> "
=1

(TX) €=

» The RX signal in matrix form:

Y=HS+W

» By extending to Q symbol periods, re-arranging the dimensions of
the channel matrix H to be MN XV(Q,and taking the DFT, we
have the uplink channel matrix :

[ —
H" = ADF,
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Channel model

M x N URA

Multipath channel

—> "
=1

(TX) é%

» The RX signal in matrix form:
Y=HS+W

» By extending to Q symbol periods, re-arranging the dimensions of
the channel matrix H to be MN XV(Q,and taking the DFT, we
have the uplink channel matrix :

H" =ADF,
Fy, is the phase shift matrix (P X LB, B <V)
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MSE characterization

» For the case of 2D DoA estimation based on a uniform planar array of
M X N elements, the mean-squared errors (MSE) of the spatial

frequencies u;, and v, are given by:
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MSE characterization

» For the case of 2D DoA estimation based on a uniform planar array of
M X N elements, the mean-squared errors (MSE) of the spatial

frequencies u;, and v, are given by:

LB N —
o2 TePiL ) lar@I7

. . 21 —
Elevation MSE:  E{(A11)*} = sz sy (M-1)Z N

52

THE UNIVERSITY OF

& KANSAS




MSE characterization

» For the case of 2D DoA estimation based on a uniform planar array of
M X N elements, the mean-squared errors (MSE) of the spatial

frequencies u;, and v, are given by:
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MSE characterization

» For the case of 2D DoA estimation based on a uniform planar array of
M X N elements, the mean-squared errors (MSE) of the spatial

frequencies u;, and v, are given by:

LB N —
o2 TePiL ) lar@I7

. . 21 —
Elevation MSE:  E{(A11)*} = sz sy (M-1)Z N

LB
o2 Il

. . 21 —
Azimuth MSE: E{(Av)"} = o (LB)? (N-1)2 M

— T Px1
b(D) = [ay, .., ap]T€ C y

THE UNIVERSITY OF

& KANSAS




MSE characterization

» For the case of 2D DoA estimation based on a uniform planar array of
M X N elements, the mean-squared errors (MSE) of the spatial

frequencies u;, and v, are given by:

LB N —
o2 TePiL ) lar@I7
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Elevation MSE:  E{(A11)*} = sz sy (M-1)Z N
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Simulation results:
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Simulation results:

3 Unitary ESPRIT Based Elevation Angle Estimation
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Simulation results:

Unitary ESPRIT Based Elevation Angle Estimation

MSE

== =4x16 elements
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: Unitary ESPRIT Based Azimuth Angle Estimation
10 —
7| ==—=4x16 elements
| —B—8xB Elements
| —€—16:x4 Elements
10° —4+— 16x16 Elements
10"k
107k
10
10'4 I ] 1 i 1
-5 0 5 10 15 20 25
SNR
Azimuth

58

KU KANSAS



Achievable rate analysis

THE UNIVERSITY OF

KANSAS




Achievable rate analysis

» The achievable rate can written as:

MN |a;|? |a;T fl|2 )

g2

R =Y log,(1+

)
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Achievable rate analysis

» The achievable rate can written as:

MN |a;|? |a;T fl|2 )

g2

R= Yi_,log,(1+ )

:> No DOA estimation error: f;= (a(v;) & a(y;))
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Achievable rate analysis

» The achievable rate can written as:

MN |a;|? |a;T fl|2 )

g2

R = Yi_1log,(1+ )
:> No DOA estimation error: f;= (a(v;) & a(y;))

:> DOA estimation error: ;= (a(v; + Av;) @ a(y; + Ayy))”
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Power allocation

» The optimal power allocation strategy the maximizes R
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Power allocation

» The optimal power allocation strategy the maximizes R
maxR subjectto XF_.p < pror
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Power allocation

» The optimal power allocation strategy the maximizes R
maxR subjectto XF_.p < pror

» Thus, the expected TX power for the [t path is
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Power allocation

» The optimal power allocation strategy the maximizes R
maxR subjectto XF_.p < pror

» Thus, the expected TX power for the [t path is

+

M“-1

Elp) = [n—+(1+ ™52 El@wp?]) (1+5 Elavp?])]
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Power allocation

» The optimal power allocation strategy the maximizes R
maxR subjectto XF_.p < pror

» Thus, the expected TX power for the [t path is

Elp] = [’7 _%(1 T M;_l E[(Auz)z]) (1 + % E[(Avl)z])r
[x]* = max (x,0) and y,= MNG|2al|2
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Power allocation

» The optimal power allocation strategy the maximizes R
maxR subjectto XF_.p < pror

» Thus, the expected TX power for the [t path is

+

Elpd = [n _yll(l T M;_l E[(au)?]) (1+ % E[(Av)?))]
[x]* = max (x,0) and y,= MNG|2al|2

» If Av; = 0 and Ay; = 0, the power allocation becomes the

traditional water-filling solution.
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Results

—8— Traditional water-filling power allocation

—&— Proposed power allocation
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Future work

» Extend the results to MU-MIMO systems.
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Future work

» Extend the results to MU-MIMO systems.

» Joint angle-delay estimation (JADE) using tensor algebra.
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Future work

» Extend the results to MU-MIMO systems.
» Joint angle-delay estimation (JADE) using tensor algebra.

» JADE for multi-cell MIMO systems.
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