LEARNING ROTATION INVARIANCE IN DEEP HIERARCHIES USING CIRCULAR SYMMETRIC FILTERS

PROBLEM

« Rotation invariant classification of
images without data augmentation or
input transformation.

« CNN with circular symmetric filters
and global pooling (max/avg).

Circular Symmetric Kernels

A continuous kernel f : R — R is circular sym-
metric if the corresponding polar representation of
the function satisfies the following property,

f(rcosa,rsina) = f(rcos 3, rsin ) .
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Figure 1: Circular symmetric kernels of size 13 x 13 and 5 X 5.

Rotation Equivariant Kernels

Continuous convolution in polar coordinates with h
as input image, f as kernel and g as output, may be
expressed as,

Giro6,) = J * hr,p,)

The convolution equation over the rotated image
hl7) with rotation angle ¢ with respect to origin, is
similarly written as,

Gy = L * 1

The convolving kernel f is said to be rotation equiv-
ariant (covariant) if,

g(r0790> — g(r0,6’0—|—¢)
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The loss function consist of two terms:

« Mean prediction error on the training dataset.

« Penalty due to circular symmetry constraint -
sum of squared euclidean distance between each
pair of parameters lying on a circular ring of
radius r in the ny, constrained kernel of the
convolution layer, summed over circular rings of

all possible radii in each constrained kernel in
cach convolution layer.

Rotation Invariant CNN
Architecture
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Invariant Features

Figure 2: Network topology description. Input image = (a)
is passed through a sequence of convolution layers containing
circular symmetric kernels (b,f) and a global maxpooling
layer (g) until the vector of scalars is not achieved. This vector
serves as an input to a fully connected layer (h) possibly with

dropout and further propagates to the network output (i).

Circular Symmetric Kernel = Rotation Equivariant Kernel

Let f represents a circular symmetric kernel. Notation used: p,¢) = p(acos§, asin§).
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Experiments and Results

Layer Parameters and output channel size
input size: 32 x 32, channel: 1
convolution kernel: 5 x 5, channel: 40
relu

convolution kernel: 5 x 5, channel: 40
relu

convolution kernel: 5 x 5, channel: 40
relu

convolution kernel: 5 x 5, channel: 80
relu

convolution kernel: 5 x 5, channel: 80
relu

global max pooling

linear channel: 5120

relu

dropout rate: 0.5

linear channel: 10

softmax

Table 1: The topology of the network used in our experiments.

Trained on Architecture Test Accuracy, %
MNIST-ROT MNIST-ORIG

Without Circular Symmetry 95.00 50.87

MNIST-ROT With Circular Symmetry (A = 1) 94.31 94.38
With Circular Symmetry (A = 3) 94.08 94.22

Without Circular Symmetry 33.46 99.42

MNIST-ORIG With Circular Symmetry (A = 1) 50.66 99.43
With Circular Symmetry (A = 3) 62.41 99.08

Table 2: Accuracies obtained by the proposed CNN architecture

with and without circular symmetric kernels over the test set of

MNIST-ORIG and MNIST-ROT (mnist-rot-12k) datasets.

Method Error, % Parameters, M Flops, M
MNIST-ROT
TI-Pooling 2.2 3.47 248
Circular Symmetric Kernel (ours) 5.69 0.78 84

Table 3: Comparison of our model with circular symmetry con-
straint with TI-Pooling method. Note that the flop computation
for TI-Pooling excludes the flops used for computing 24 rotations

of the input image.

Advantages

« High generalization across similar datasets =
Robust architecture.

« Less number of parameters = Low computation.

« No data augmentation and transformation.



