

Local Variability Vector for Text-independent Speaker Verification

Liping Chen¹, Kong Aik Lee², Bin Ma², Wu Guo¹, Haizhou Li², and Li Rong Dai¹

¹National Eng Lab for Speech and Language Information Processing, USTC, China

²Institute for Infocomm Research, A*STAR, Singapore

Introduction

- Speaker recognition to use a person voice as a mean to authenticate his/her identify (text-independent).
- Classical GMM-UBM paradigm [Reynolds et al, 2000]:
 UBM, MAP, speaker model, log-likelihood ratio.

D. A. Reynolds, T. F. Quatieri, and R. B. Dumn, "Speaker verification using adapted Gaussian mixture model," *Digital Signal Processing*, vol. 10, no. 1-3, pp. 19-41, 2000.

Introduction (cont'd)

- The i-vector PLDA paradigm:
 - Speech utterances are represented as fixed-length low dimensional vectors – the so-called i-vector (or identity vectors).
 - No speaker model both the enrollment and test utterances are represented as i-vectors.
 - The log-likelihood ratio is computed as the hypothesis test whether two i-vectors are from the same or different speakers.

PLDA model facilitates the hypothesis test and channel compensation.

 H_0 : Same speaker

 H_1 : Different speakers

Motivation

- An i-vector represents the speaker and channel variability contained in an utterance.
- Local information associated with individual dimensions of the acoustic space are conflated to a single i-vector.
- We propose a local variability model to capture the local variability associated with individual dimension of the acoustic space.
- A speech utterance is represented by a set of *local variability vectors* instead of a single i-vector.
- Approach: changing the tying scheme in the total variability model.

I-vector extraction

- Given a speech utterance, we assume that it was generated from a speaker and channel dependent GMM.
- The mean super-vector lies in a low-dimensional subspace **T**:

• An i-vector is the posterior mean of the latent variable \mathbf{w}_r .

$$\phi_r = E\left[\mathbf{w}_r \mid \mathcal{O}_r\right] = \underset{\mathbf{w}_r}{\operatorname{arg\,m}} \operatorname{ax} p\left(\mathcal{O}_r \mid \mathbf{\mu} + \mathbf{T} \mathbf{w}_r\right) \mathcal{N}\left(\mathbf{w}_r \mid 0, \mathbf{I}\right)$$

Total variability model

- *R* number of utterances
- *C* number of Gaussians
- $N_{r,c}$ number of frames associated with the c-th Gaussian component
- The latent variable \mathbf{w}_r is tied (or shared) across
 - Frames
 - Mixtures

Total variability model (cont'd)

Likelihood function

$$l_{\text{TVM}}(\theta) = \prod_{r=1}^{R} \int \left(\prod_{c=1}^{C} \prod_{t=1}^{N_{r,c}} \mathcal{N}(o_{r,c,t} \mid \boldsymbol{\mu}_{c} + \mathbf{T}_{c} \mathbf{w}_{r}, \boldsymbol{\Sigma}_{c}) \right) \mathcal{N}(\mathbf{w}_{r} \mid 0, \mathbf{I}) d\mathbf{w}_{r}$$

Posterior estimation

$$\phi_r = E\{\mathbf{w}_r \mid \mathcal{O}_r\} = \mathbf{L}_r^{-1} \left(\sum_{c=1}^C \mathbf{T}_c^{\mathrm{T}} \mathbf{\Sigma}_c^{-1} \mathbf{F}_{r,c} \right) \quad \text{i-vector (posterior mean)}$$

$$\mathbf{L}_r^{-1} = \left(\mathbf{I} + \sum_{c=1}^C N_{r,c} \mathbf{T}_c^{\mathrm{T}} \mathbf{\Sigma}_c^{-1} \mathbf{T}_c\right)^{-1}$$

Posterior covariance

Local variability model

 We propose to remove the tying of latent variable across dimensions of the acoustic space while retaining the tying across frames and mixtures.

Local variability model (cont'd)

- Objective: to model the local variability specific to each dimension of the acoustic space.
- This formulation leads to dimension-centric variability modeling referred to as the local variability model (LVM).
- Likelihood function:

$$l_{\text{CLVM}}\left(\boldsymbol{\theta}\right) = \prod_{r=1}^{R} \prod_{d=1}^{D} \int \prod_{c=1}^{C} \prod_{t=1}^{N_{r,c}} \mathcal{N}\left(o_{r,c,t,d} \mid \mathbf{V}_{d,c} \mathbf{w}_{r,d}, \boldsymbol{\sigma}_{d,c}\right) \mathcal{N}\left(\mathbf{w}_{r,d} \mid 0, \mathbf{I}\right) d\mathbf{w}_{r,d}$$

$$l_{\text{TVM}}(\theta) = \prod_{r=1}^{R} \int \left(\prod_{c=1}^{C} \prod_{t=1}^{N_{r,c}} \mathcal{N}(o_{r,c,t} \mid \boldsymbol{\mu}_{c} + \mathbf{T}_{c} \mathbf{w}_{r}, \boldsymbol{\Sigma}_{c}) \right) \mathcal{N}(\mathbf{w}_{r} \mid 0, \mathbf{I}) d\mathbf{w}_{r}$$

Local variability model (cont'd)

- A speech utterance is represented by a set of *local variability* vectors instead of a single i-vector.
- Posterior inference (E-step):

$$\mathbf{y}_{r,d} = E\left\{\mathbf{w}_{r,d} \middle| \mathcal{O}_r\right\} = \mathbf{L}_{r,d}^{-1} \mathbf{V}_d^{\mathrm{T}} \tilde{\mathbf{F}}_{r,d} \quad \text{for } d = 1, 2, ..., D$$
$$\mathbf{L}_{r,d}^{-1} = \left(\mathbf{I} + \mathbf{V}_d^{\mathrm{T}} \mathbf{\Gamma}_r \mathbf{V}_d\right)^{-1}$$

Parameter estimation (M-step):

$$\mathbf{v}_d^c = \mathbf{\Phi}_d^c \left(\sum_r \gamma_{r,c} \mathbf{K}_{r,d} \right)^{-1} \text{ for } c = 1, 2, \dots, C, \quad d = 1, 2, \dots, D$$

$$\mathbf{\Phi}_{d} = \sum_{r} \tilde{\mathbf{F}}_{r,d} E \left[\mathbf{w}_{r,d}^{\mathrm{T}} \right] \qquad \mathbf{K}_{r,d} = E \left[\mathbf{w}_{r,d} \mathbf{w}_{r,d}^{\mathrm{T}} \right]$$

Channel compensation and scoring with PLDA

- Local variability vectors are concatenated and taken as input to PLDA.
- PLDA is essentially a Gaussian distribution with a structured covariance for speaker and channel variability modeling:

PLDA scoring:

$$l(\mathbf{y}_{t}, \mathbf{y}_{e}) = \log \frac{p(\mathbf{y}_{t}, \mathbf{y}_{e})}{p(\mathbf{y}_{t}) p(\mathbf{y}_{e})}$$

 H_0 : Same speaker

 H_1 : Different speakers

Experimental setup

Component	Configuration	DEV Set
UBM	• 512 Gaussian mixtures	NIST SRE' 04
i-vector	 Total variability matrix of rank 400. PLDA with F and G of rank 200 and 50 with a full covariance matrix 	NIST SRE'04, 05 and 06 telephone data
Local variability vector	 57 x 20-dim local vectors PLDA with F and G of rank 400 and 30 with a diagonal covariance matrix 	NIST SRE'04, 05 and 06 telephone data

Results – SRE'08

• Performance comparison on DET6 of *short2-short3* task of NIST SRE'08.

	Male		
	EER (%)	minDCF08	minDCF10
TVM	3.6182	0.2130	0.6820
LVM	4.7559	0.2596	0.7895
Fusion	3.3700	0.1943	0.6042
	Female		
	EER (%)	minDCF08	minDCF10
TVM	5.3908	0.2767	0.9972
LVM	6.6144	0.3367	0.9950
fusion	5.4505	0.2707	0.9961

Results – SRE'10

• Performance comparison on CC5 of *core-core* task in NIST SRE'10.

	Male		
	EER (%)	minDCF08	minDCF10
TVM	3.0836	0.1253	0.3654
LVM	3.7590	0.1453	0.5439
Fusion	2.5136	0.1212	0.3626
	Female		
	EER (%)	minDCF08	minDCF10
TVM	2.6743	0.1458	0.3239
LVM	4.3068	0.2317	0.6119
fusion	2.5399	0.1488	0.3521

Conclusion

- We proposed the local variability model (LVM) pivoted on the idea of extracting the local variability associated with each dimension of the acoustic features.
- We derived the posterior inference and the EM steps for parameter learning.
- Experimental results suggest that the proposed *local variability vector* models the speaker information that is absent in the *i-vector*.

ISCSLP 2014, Singapore

THANKS