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Background

Internet of Things has attracted much attention recently where
machines are connected via a sensor network. And this can be
modeled using a decentralized detection framework.

In this framework, a curious fusion center can use the received sensor
information to infer a correlated private hypothesis.

Example

The deployment of home-monitoring video cameras in old folks’ home for
fall detection. In order to make fall detection, without exposing too much
privacy of the old people to the fusion center, what information should the
video cameras send to fusion center?
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Related Work

[Nadendla and Varshney, 2014] considers decentralized detection in
the presence of an eavesdropper.

In [Li and Oechtering, 2014] and [du Pin Calmon and Fawaz, 2012],
preserving the privacy of a correlated hypothesis was studied in the
decentralized detection framework. The distribution of the hypothesis
have to be known to use the method provided in both papers.

A nonparametric approach to decentralized detection was introduced
by [Nguyen et al., 2005], which proposes the use of kernel-based
method to learn the optimal sensor decision rules from a given set of
labeled training data.
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Problem Formulation
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Public hypothesis H, and private hypothesis G take values {−1,+1}.
Each sensor t makes a noisy observation X t ∈ X of (H,G ),
summarizes its observation using a local decision rule γt : X 7→ Z,
and transmits Z t = γt(X t) to a fusion center. Here,
X = {1, 2, . . . ,M}, and Z = {1, 2, . . . , L}, where M � L.

Let X = {X 1,X 2, . . . ,X S} and Z = {Z 1,Z 2, . . . ,ZS}. And the
fusion center makes a decision Ĥ = γH(Z ) ∈ {−1,+1} and
Ĝ = γG (Z ) ∈ {−1,+1}.
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Problem Formulation
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Following [Nguyen et al., 2005], our problem is

min
γH∈H,Q∈Q

∑
z∈ZS

n∑
i=1

φ(hiγ
H(z))Q(z | x i ) +

λ

2
‖wH‖2,

s.t.
∑
z∈ZS

n∑
i=1

φ(giγ
G
∗ (z))Q(z | x i ) +

λ

2
‖wG‖2 ≥ T ,

γG∗ = arg min
γG∈H

∑
z∈ZS

n∑
i=1

φ(giγ
G (z))Q(z | x i ) +

λ

2
‖wG‖2
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Algorithm Design

min
αH∈Rn,Q∈Q

FH(αH ,Q),

s.t. FG (αG ,Q) ≥ T ,

αG = arg min
α∈Rn

FG (α,Q)

where
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H
j hjKQ (x i , x j )


+
λ

2

n∑
i=1

n∑
j=1

α
H
i α

H
j hi hjKQ (x i , x j ),

FG (αG
,Q) =
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φ

gi

n∑
j=1

α
G
j gjKQ (x i , x j )
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+
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G
i α

G
j gi gjKQ (x i , x j ).
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By using the interior-point method with the logistic barrier, we obtain the
following optimization problem

min
αH∈Rn,Q∈Q

FH(αH ,Q)− 1

µ
log
(
FG (αG ,Q)− T

)
,

s.t. αG = arg min
α∈Rn

FG (α,Q),

where µ > 0 is the barrier parameter. From Proposition 2 in
[Nguyen et al., 2005], for a fixed Q we have

min
α∈Rn

FG (αG ,Q)

= sup
αG∈Rn

−
n∑

i=1

φ∗(−αi )−
1

2λ

n∑
i=1

n∑
j=1

αG
i α

G
j gigjKQ(x i , x j)

 ,

where φ∗ is the conjugate dual of φ [Rockafellar, 1972].
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min
αH∈Rn,αG∈Rn,Q∈Q

F0(αH , αG ,Q),

where

F0(αH , αG ,Q)

= FH(αH ,Q)

− 1

µ
log
(
−

n∑
i=1

φ∗(−αG
i )

− 1

2λ

n∑
i=1

n∑
j=1

αG
i α

G
j gigjKQ(x i , x j)− T

)
.
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Algorithm

input:{hi , gi , x1i , . . . , xSi }ni=1

Step 0: Initialize αH [0] ∈ Rn, αG [0] ∈ Rn,Q[0] ∈ Q,
Step k ≥ 1:

Fix αG [k − 1] and Q[k − 1], update

αH [k] = αH [k − 1]

− tα∇αHF0(αH [k − 1], αG [k − 1],Q[k − 1]),

where tα ≤ 2/L0, and L0 is the Lipschitz constant of F0.
Fix αH [k] and Q[k − 1], update

αG [k] = αG [k − 1]

− tα∇αGF0(αH [k], αG [k − 1],Q[k − 1]),

where tα ≤ 2/L0.
Fix αH [k] and αG [k], with tQ ≤ 1/L0, update

Q[k] = arg min
Q∈Q∥∥Q − Q[k − 1] + tQ∇QF0(αH [k], αG [k],Q[k − 1])

∥∥
`2
,
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Simulation Results
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(a) For hypothesis H
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(b) For hypothesis G

Figure: Error rate of deciding hypothesis as T varies
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Figure: The ratio between the error
rates of H and G , as the correlation
coefficient varies

(H,G ) x

(−1,−1) −3
(−1, 1) −1
(1,−1) 1
(1, 1) 3

Table: Sensor observations for different
realizations of (H,G ).
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Summary

In decentralized detection network, we studied the way to protect the
private signal of correlated source from the curious fusion center.

We proposed an algorithm to design the local decision rule and fusion
center rule.

We ran several simulations and find that:

Our algorithm can yield a high error rate for the private hypothesis G ,
while keeping the error rate of deciding the public hypothesis H
relatively low.
The error rates for deciding H and G increase with increasing threshold
T in both models.
The detection ability become more similar if H and G are more
correlated.
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