

- High-dimensional data exchange at all times.
- Involves batch processing: Detection cannot start until the maximizer is obtained

Anit Kumar Sahu and Soummya Kar

Distributed Approach

Assumptions

(A.1)-Global Observability The sensing model is globally observable, i.e., any two distinct values of θ and θ^* in the parameter space satisfy

$$\sum_{n=1}^{N} \left\| \mathbf{h}_{n}(\theta) - \mathbf{h}_{n}(\theta^{*}) \right\|^{2} = 0$$

if and only if $\theta = \theta^*$.

(A.2)-Network Connectivity The inter-agent communication graph is connected, i.e., $\lambda_2(\mathbf{L}) > 0$, where **L** denotes the associated graph Laplacian matrix.

(A.3)-Smoothness For each agent $n, \forall \theta \neq \theta_1$, the sensing functions \mathbf{h}_n are continuously differentiable and Lipschitz continuous with constants $k_n > 0$, i.e.

 $\|\mathbf{h}_{n}(\theta) - \mathbf{h}_{n}(\theta_{1})\| \leq k_{n} \|\theta - \theta_{1}\|.$

(A.4)-Monotonicity For each pair of θ and $\dot{\theta}$ with $\theta \neq \dot{\theta}$, there exists a constant $c^* > 0$ such that the following aggregate strict monotonicity condition

$$\sum_{n=1}^{N} \left(\theta - \hat{\theta}\right)^{\top} \left(\nabla \mathbf{h}_{n}\left(\theta\right)\right) \mathbf{\Sigma}_{n}^{-1} \left(\mathbf{h}_{n}\left(\theta\right) - \mathbf{h}_{n}\left(\hat{\theta}\right)\right) \geq c^{*} \left\|\theta - \hat{\theta}\right\|^{2}.$$

CIGLRT: Consensus+Innovations GLRT Algorithm **Parameter Estimation Update**

 $\theta_n(t+1) = \theta_n(t) - \beta_t \sum_{n=1}^{\infty} (\theta_n(t) - \theta_l(t)) + \alpha_t \nabla \mathbf{h}_n(\theta_n(t)) \mathbf{\Sigma}_n^{-1} (\mathbf{y}_n(t) - \mathbf{h}_n(\theta_n(t)))$ local innovation

The weight sequences $\{\alpha_t\}_{t>0}^{\text{neighborhood consensus}}$ and $\{\beta_t\}_{t\geq 0}$ are given by

$$\alpha_t = \frac{1}{(t+1)} \ \beta_t = \frac{b}{(t+1)^{\tau_2}}$$

Decision Statistic Update

$$z_n(t+1) = \frac{t}{t+1} \left(z_n(t) - \delta \sum_{l \in \Omega_n} (z_n(t) - z_l(t)) \right) + \underbrace{\frac{1}{t+1} \log \frac{f_{\theta_n(t)}(y_n(t))}{f_0(y_n(t))}}_{\text{local innovation}},$$

$$\delta \in \left(0, \frac{2}{\lambda_N\left(\mathbf{L}\right)}\right)$$

Decision Rule

$$\mathcal{H}_n(t) = \begin{cases} \mathcal{H}_0 & z_n(t) \leq \eta \\ \mathcal{H}_1 & z_n(t) > \eta, \end{cases}$$

Probability of Errors

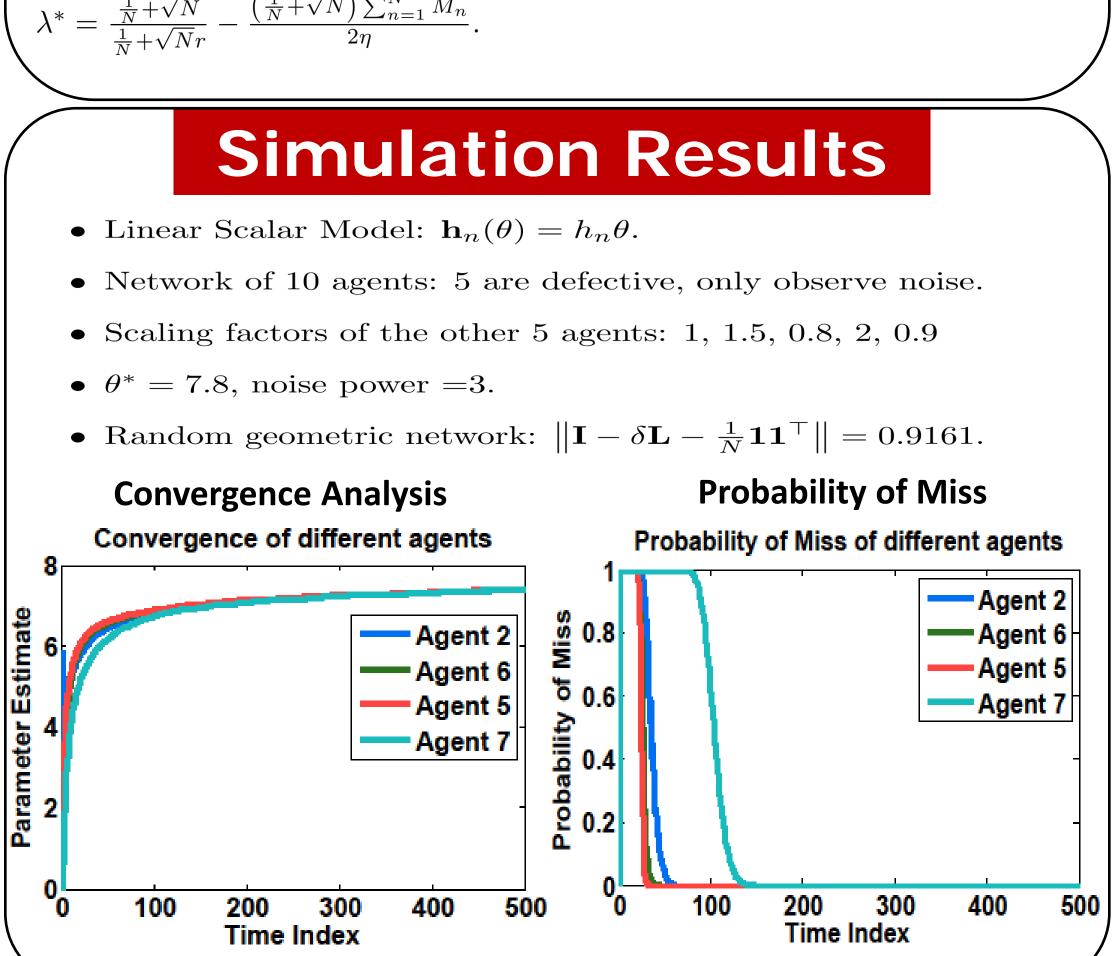
 $P_{M,\theta^*}(t) = P_{1,\theta^*}\left(z_n(t) \le \eta\right)$ $P_{FA}(t) = P_0\left(z_n(t) > \eta\right),$

Asymptotic Normality and Error Analysis

for all $\|\theta^*\| > 0$,

$$\sqrt{t+1}$$

where LE(



Carnegie Mellon University Electrical & Computer ENGINEERING

Main Results

Theorem 1: Asymptotic Normality Consider the CIGLRT algorithm under Assumptions A.1-A.4, and the sequence $\{\mathbf{z}(t)\}$. We then have under P_{θ^*} ,

$$\left(z_n(t) - \frac{\mathbf{h}^{\top}\left(\theta_N^*\right) \mathbf{\Sigma}^{-1} \mathbf{h}\left(\theta_N^*\right)}{2N}\right) \stackrel{\mathcal{D}}{\Longrightarrow} \mathcal{N}\left(0, \frac{\mathbf{h}^{\top}\left(\theta_N^*\right) \mathbf{\Sigma}^{-1} \mathbf{h}\left(\theta_N^*\right)}{N^2}\right), \forall n$$

where $\theta_N^* = \mathbf{1}_N \otimes \theta^*$, $\mathbf{h}(\theta_N^*) = \left[\mathbf{h}_1^\top(\theta^*) \cdots \mathbf{h}_N^\top(\theta^*)\right]^\top$ and $\xrightarrow{\mathcal{D}}$ refers to convergence in distribution (weak convergence).

Theorem 2: Error Analysis Consider the decision rule of CIGLRT. For all θ^* which satisfy $\frac{\mathbf{h}^{\top}(\theta_N^*)\mathbf{\Sigma}^{-1}\mathbf{h}(\theta_N^*)}{2N} > \frac{\left(\frac{1}{N} + \sqrt{N}r\right)\sum_{n=1}^{N}M_n}{2}$, we have the following choice of the thresholds $\frac{\left(\frac{1}{N} + \sqrt{N}r\right)\sum_{n=1}^{N}M_n}{2} < \eta < \frac{\mathbf{h}^{\top}(\theta_N^*)\mathbf{\Sigma}^{-1}\mathbf{h}(\theta_N^*)}{2N}$ for which we have that $P_{M,\theta^*}(t) \to 0$ and $P_{FA}(t) \to 0$ as $t \to \infty$. Specifically, $P_{FA}(t)$ decays to zero exponentially with the following large deviations exponent

$$\limsup_{t \to \infty} \frac{1}{t} \log \left(P_0 \left(z_n(t) > \eta \right) \right) \le -LE \left(\min\{\lambda^*, 1\} \right)$$
$$(\lambda) = \frac{\eta \lambda}{\frac{1}{N} + \sqrt{N}} + \left(\frac{\sum_{n=1}^N M_n}{2} \right) \log \left(1 - \frac{\lambda \left(\frac{1}{N} + \sqrt{N}r \right)}{\frac{1}{N} + \sqrt{N}} \right),$$
$$(\overline{M}_{N_n} = \frac{\left(\frac{1}{N} + \sqrt{N} \right) \sum_{n=1}^N M_n}{2n}.$$