
HSA-ENABLED DSP AND ACCELERATORS

JOHN GLOSSNER, GENERAL PROCESSOR TECHNOLOGIES, INC

PAUL BLINZER, ADVANCED MICRO DEVICE, INC

JARMO TAKALA, TAMPERE UNIVERSITY OF TECHNOLOGY, FINLAND

Heterogeneous SOCs have arrived, a tremendous advance over previous platforms

 Today SOCs combine many programmable blocks with high bandwidth access to memory

 CPU cores, GPU cores, audio and other domain specific processors and accelerators

 Each one with their own ISA, micro-architecture and language tool chain

 But: require specialized APIs or languages to target the processors

How do we make them even better?
 Easier to program

 Easier to optimize

 Higher performance

 Lower power

HETEROGENEOUS PROCESSORS HAVE

PROLIFERATED — MAKE THEM BETTER

THE GOALS OF

THE HETEROGENEOUS SYSTEM ARCHITECTURE

 Create a platform architecture accessible for all accelerator types
 Focus on compute, allowing other accelerator types to participate

 HSA unites accelerators architecturally, benefiting platform integration and system software

 Attract mainstream programmers
 By making it easier writing data parallel code

 Native high-level language support of a broader set beyond traditional accelerator languages

 Support for Task Parallel & Nested Data Parallel Runtimes

 Rich debugging and performance analysis support

 It is not dictating a specific platform or component microarchitecture
 It defines the “what needs to be supported”, not the “how it needs to be supported”

 Focus is on providing a robust data parallel application execution infrastructure that use familiar
ways to write, reuse and maintain the software and use familiar language tool chains

THE PILLARS OF HSA

 To bring accelerators forward as a first class processor within the system

 Unified process address space across all processors (Shared Virtual Memory)

 Well-defined relaxed consistency memory model suited for many high level languages

 Memory coherency between the CPU and HSA agents to simplify “data collaboration”

 But supporting coarse-grain access for specialized task accelerators

 Architected signal and event notification mechanisms between processers

 Architected User mode dispatch/scheduling (eliminates “drivers” from dispatch path)

 QoS through pre-emption and context switching*

 HSAIL: data parallel machine language target for runtime/compiler tool chains

 OpenCL, C/C++ and other high level language tool chains

 Open specifications and open source reference software and tool chains available

© Copyright 2012-2015 HSA Foundation. All Rights Reserved.

HSA COMMAND AND DISPATCH FLOW

Application

A

Application

B

Application

C

Optional Dispatch

Buffer

Accelerator

Hardware

Hardware Queue

A

A A

Hardware Queue

B

B B

Hardware Queue

C

C C

C

C

HW view:

 HW / microcode controlled

 HW scheduling

 Architected Queuing Language

(AQL)

 HW-managed protection

SW view:

 User-mode dispatches to HW

 No Kernel Driver overhead

 Low dispatch times

 CPU & Accelerator dispatch APIs

© Copyright 2012-2015 HSA Foundation. All Rights Reserved.

Hardware - APUs, CPUs, GPUs, DSPs

Driver Stack

Domain Libraries

OpenCL™, DX Runtimes,

User Mode Drivers

Kernel Mode Driver

Apps
Apps

Apps
Apps

Apps
Apps

HSA Software Stack

Task Queuing

Libraries

HSA Domain Libraries,

OpenCL ™ 2.x Runtime

HSA Kernel

Mode Driver

HSA Runtime

HSA JIT

Apps
Apps

Apps
Apps

Apps
Apps

User mode component Kernel mode component Components contributed by third parties

HSA - EVOLUTION OF THE SOFTWARE

STACK

© Copyright 2012-2015 HSA Foundation. All Rights Reserved.

WHAT IS HSAIL?

 Intermediate language for parallel compute in HSA

 Generated by a “High Level Compiler” (GCC, LLVM, Java VM, etc)

 Expresses parallel regions of code

 Binary format of HSAIL is called “BRIG”

 Goal: Bring parallel acceleration to mainstream programming languages

main() {

…

#pragma omp parallel for

for (int i=0;i<N; i++) {

}

…

}

High-Level

Compiler
BRIG Finalizer HSA Agent

ISA

Host ISA

© Copyright 2012-2015 HSA Foundation. All Rights Reserved.

HSAIL: HSA INTERMEDIATE LAYER

 A Virtual Explicitly Parallel ISA

 ~135 Opcodes

 RISC Register-based Load/Store

 Branches & Function Calls

 Atomic Operations

 Arithmetic

 IEEE 754 Floating Point

 including 16-bit Integer (32/64-bit)

 DSP fixed point

 Packed / SIMD

 f16x2, f16x4, f16x8,f32x2, f32x4, f64x2

 signed/unsigned 8x4, 8x8, 8x16, 16x2,

 16x4, 16x8, 32x2, 32x4, 64x2

 Wavefronts

 1, 2, 4, 8, 16, 32, or 64

SIMD lanes

 Lanes can be active or

inactive

 Memory

 Shared Virtual Memory

 Exceptions

8

SB3500

 3 Sandblaster 2.0 DSPs

 600MHz, 4-way threaded

 32KB I-Cache, 256KB D-memory

 256b Vector Unit, 16 x 16b MACs

 9600 MMAC/s

 HSN interconnect

 ring

 2.4GBs/link

 ARM, 65nm LP

 Full Production

9

MAPPING HSAIL ONTO SB3500

 HSA

 HSA agent

 Compute Unit

 Processing Element

 Work-Item

 Work-Group

 Wavefront

 Packed / SIMD



 SB3500

 SB3500 DSP Complex

 3 DSP cores

 SB3500 DSP Core

 SB3500 Thread Unit

 Software Thread

 Multi-threaded App

 FIR filter, FFT, etc.

 Vector

10

MAPPING HSAIL TO DSP - DOT PRODUCT

 The dot product of two vectors is

15-Dec-15SPIE Workshop on Heterogeneous Computing Systems 11

𝑎 ∙ 𝑏 =

𝑖=1

𝑛

𝑎𝑖𝑏𝑖 = 𝑎1𝑏1 + 𝑎2𝑏2 +⋯+ 𝑎𝑛𝑏𝑛

OPENCL DOT PRODUCT

12

C/C++ DOT PRODUCT

13

// Typical DSP Inner Loop

float out[N];

float in[N+T-1];

float taps[T];

for(i = 0; i < N; i++)

 v = 0;

 for(j = 0; j < T; j++)

 v += in[i+j]*taps[j];

 out[i] = v;

// Typical Graphics Inner Loop

float out[N][4];

float in[N][4];

float matrix[4][4];

for(i = 0; i < N; i++)

 for(j = 0; j < 4; j++)

 v = 0;

 for(k = 0; k < 4; k++)

 v += in[i][j] * matrix[j][k];

 out[i][j] = v;

HSAIL DOT PRODUCT (1)

14

HSAIL DOT PRODUCT (2)

15

SB3500 DOT PRODUCT

16

SB3500 INSTRUCTIONS NOT IN HSAIL

 SIMD reduce with/without Mask

 sum of all elements in a SIMD register

 find the maximum element value in an

SIMD register

 find the minimum element value in an

SIMD register

 Multiply-reduce

 Or just the horizontal reduction

 Rotate a pair of vector registers by a

single element

 The element with the highest index from

one register is shifted into the lowest

index of another register.

 Complex vector multiply

 de-rotation

 SIMD formats for bit operations

 Entropy encoding

 Bit correlations

 Encryption

 Special Purpose Instructions

 FFT

 Viterbi/Turbo/LDPC

 Galois Field

17

RESULTS(1)

 HSAIL Includes Most Instructions Inherent in DSP Applications

 Even when absent, some algorithms can be changed

 DSP’s tend to use compound operations that HSAIL specifies independently

 Vector load with update

 Decrement and Branch

 Vector MAC

 No vector FMA in HSAIL (really only need scalar->vector and vector->vector)

 Rotate Vector Element

 ld_global_b128 inefficient (throw away 7 elements)

 Horizontal Reductions

 Matrix * Vector operations

 Long Vector Dot Products

18

RESULTS(2)

19

 Peep hole optimization may be difficult but possible

 Optimizing HSAIL compiler should try to maximize the distance between Load and Use

 May be hard to find some patterns (register operands)

 Easier to break apart compound instructions versus coalescing them

 Finalizer is available to identify and coalesce instructions on the platform

 Standard may see extensions to better accommodate DSP

 NOT SHOWN: To achieve full throughput you need to unroll the loops

 In excessive cases eventually may cause register pressure

CONCLUSIONS

 HSAIL is Scalable Heterogeneous System Methodology

 Solves H/W Integration and S/W Programming of Heterogeneous Systems

 A RISC-based Virtual Machine

 Many DSP Algorithms Can Be Efficiently Described in HSAIL

 Includes SIMD Fixed Point Types / F16 Vector Floating Point

 Restructured Algorithms Can Improve Performance

 Some DSP Operations May Be More Efficiently Described With Compound
Operations

 Common to many DSPs

 Lower Power (reduced loads)

 Easier For Compiler to Break Apart Compound Operations

 Additional Unrolling of Loops May Cause Register Pressure

20

MEMBERS DRIVING HSA
Founders

Promoters

Supporters

Contributors

Academic

ANY QUESTIONS?
 Of course there are, so go ahead 

