
HSA-ENABLED DSP AND ACCELERATORS

JOHN GLOSSNER, GENERAL PROCESSOR TECHNOLOGIES, INC

PAUL BLINZER, ADVANCED MICRO DEVICE, INC

JARMO TAKALA, TAMPERE UNIVERSITY OF TECHNOLOGY, FINLAND

Heterogeneous SOCs have arrived, a tremendous advance over previous platforms

 Today SOCs combine many programmable blocks with high bandwidth access to memory

 CPU cores, GPU cores, audio and other domain specific processors and accelerators

 Each one with their own ISA, micro-architecture and language tool chain

 But: require specialized APIs or languages to target the processors

How do we make them even better?
 Easier to program

 Easier to optimize

 Higher performance

 Lower power

HETEROGENEOUS PROCESSORS HAVE

PROLIFERATED — MAKE THEM BETTER

THE GOALS OF

THE HETEROGENEOUS SYSTEM ARCHITECTURE

 Create a platform architecture accessible for all accelerator types
 Focus on compute, allowing other accelerator types to participate

 HSA unites accelerators architecturally, benefiting platform integration and system software

 Attract mainstream programmers
 By making it easier writing data parallel code

 Native high-level language support of a broader set beyond traditional accelerator languages

 Support for Task Parallel & Nested Data Parallel Runtimes

 Rich debugging and performance analysis support

 It is not dictating a specific platform or component microarchitecture
 It defines the “what needs to be supported”, not the “how it needs to be supported”

 Focus is on providing a robust data parallel application execution infrastructure that use familiar
ways to write, reuse and maintain the software and use familiar language tool chains

THE PILLARS OF HSA

 To bring accelerators forward as a first class processor within the system

 Unified process address space across all processors (Shared Virtual Memory)

 Well-defined relaxed consistency memory model suited for many high level languages

 Memory coherency between the CPU and HSA agents to simplify “data collaboration”

 But supporting coarse-grain access for specialized task accelerators

 Architected signal and event notification mechanisms between processers

 Architected User mode dispatch/scheduling (eliminates “drivers” from dispatch path)

 QoS through pre-emption and context switching*

 HSAIL: data parallel machine language target for runtime/compiler tool chains

 OpenCL, C/C++ and other high level language tool chains

 Open specifications and open source reference software and tool chains available

© Copyright 2012-2015 HSA Foundation. All Rights Reserved.

HSA COMMAND AND DISPATCH FLOW

Application

A

Application

B

Application

C

Optional Dispatch

Buffer

Accelerator

Hardware

Hardware Queue

A

A A

Hardware Queue

B

B B

Hardware Queue

C

C C

C

C

HW view:

 HW / microcode controlled

 HW scheduling

 Architected Queuing Language

(AQL)

 HW-managed protection

SW view:

 User-mode dispatches to HW

 No Kernel Driver overhead

 Low dispatch times

 CPU & Accelerator dispatch APIs

© Copyright 2012-2015 HSA Foundation. All Rights Reserved.

Hardware - APUs, CPUs, GPUs, DSPs

Driver Stack

Domain Libraries

OpenCL™, DX Runtimes,

User Mode Drivers

Kernel Mode Driver

Apps
Apps

Apps
Apps

Apps
Apps

HSA Software Stack

Task Queuing

Libraries

HSA Domain Libraries,

OpenCL ™ 2.x Runtime

HSA Kernel

Mode Driver

HSA Runtime

HSA JIT

Apps
Apps

Apps
Apps

Apps
Apps

User mode component Kernel mode component Components contributed by third parties

HSA - EVOLUTION OF THE SOFTWARE

STACK

© Copyright 2012-2015 HSA Foundation. All Rights Reserved.

WHAT IS HSAIL?

 Intermediate language for parallel compute in HSA

 Generated by a “High Level Compiler” (GCC, LLVM, Java VM, etc)

 Expresses parallel regions of code

 Binary format of HSAIL is called “BRIG”

 Goal: Bring parallel acceleration to mainstream programming languages

main() {

…

#pragma omp parallel for

for (int i=0;i<N; i++) {

}

…

}

High-Level

Compiler
BRIG Finalizer HSA Agent

ISA

Host ISA

© Copyright 2012-2015 HSA Foundation. All Rights Reserved.

HSAIL: HSA INTERMEDIATE LAYER

 A Virtual Explicitly Parallel ISA

 ~135 Opcodes

 RISC Register-based Load/Store

 Branches & Function Calls

 Atomic Operations

 Arithmetic

 IEEE 754 Floating Point

 including 16-bit Integer (32/64-bit)

 DSP fixed point

 Packed / SIMD

 f16x2, f16x4, f16x8,f32x2, f32x4, f64x2

 signed/unsigned 8x4, 8x8, 8x16, 16x2,

 16x4, 16x8, 32x2, 32x4, 64x2

 Wavefronts

 1, 2, 4, 8, 16, 32, or 64

SIMD lanes

 Lanes can be active or

inactive

 Memory

 Shared Virtual Memory

 Exceptions

8

SB3500

 3 Sandblaster 2.0 DSPs

 600MHz, 4-way threaded

 32KB I-Cache, 256KB D-memory

 256b Vector Unit, 16 x 16b MACs

 9600 MMAC/s

 HSN interconnect

 ring

 2.4GBs/link

 ARM, 65nm LP

 Full Production

9

MAPPING HSAIL ONTO SB3500

 HSA

 HSA agent

 Compute Unit

 Processing Element

 Work-Item

 Work-Group

 Wavefront

 Packed / SIMD

 SB3500

 SB3500 DSP Complex

 3 DSP cores

 SB3500 DSP Core

 SB3500 Thread Unit

 Software Thread

 Multi-threaded App

 FIR filter, FFT, etc.

 Vector

10

MAPPING HSAIL TO DSP - DOT PRODUCT

 The dot product of two vectors is

15-Dec-15SPIE Workshop on Heterogeneous Computing Systems 11

𝑎 ∙ 𝑏 =

𝑖=1

𝑛

𝑎𝑖𝑏𝑖 = 𝑎1𝑏1 + 𝑎2𝑏2 +⋯+ 𝑎𝑛𝑏𝑛

OPENCL DOT PRODUCT

12

C/C++ DOT PRODUCT

13

// Typical DSP Inner Loop

float out[N];

float in[N+T-1];

float taps[T];

for(i = 0; i < N; i++)

 v = 0;

 for(j = 0; j < T; j++)

 v += in[i+j]*taps[j];

 out[i] = v;

// Typical Graphics Inner Loop

float out[N][4];

float in[N][4];

float matrix[4][4];

for(i = 0; i < N; i++)

 for(j = 0; j < 4; j++)

 v = 0;

 for(k = 0; k < 4; k++)

 v += in[i][j] * matrix[j][k];

 out[i][j] = v;

HSAIL DOT PRODUCT (1)

14

HSAIL DOT PRODUCT (2)

15

SB3500 DOT PRODUCT

16

SB3500 INSTRUCTIONS NOT IN HSAIL

 SIMD reduce with/without Mask

 sum of all elements in a SIMD register

 find the maximum element value in an

SIMD register

 find the minimum element value in an

SIMD register

 Multiply-reduce

 Or just the horizontal reduction

 Rotate a pair of vector registers by a

single element

 The element with the highest index from

one register is shifted into the lowest

index of another register.

 Complex vector multiply

 de-rotation

 SIMD formats for bit operations

 Entropy encoding

 Bit correlations

 Encryption

 Special Purpose Instructions

 FFT

 Viterbi/Turbo/LDPC

 Galois Field

17

RESULTS(1)

 HSAIL Includes Most Instructions Inherent in DSP Applications

 Even when absent, some algorithms can be changed

 DSP’s tend to use compound operations that HSAIL specifies independently

 Vector load with update

 Decrement and Branch

 Vector MAC

 No vector FMA in HSAIL (really only need scalar->vector and vector->vector)

 Rotate Vector Element

 ld_global_b128 inefficient (throw away 7 elements)

 Horizontal Reductions

 Matrix * Vector operations

 Long Vector Dot Products

18

RESULTS(2)

19

 Peep hole optimization may be difficult but possible

 Optimizing HSAIL compiler should try to maximize the distance between Load and Use

 May be hard to find some patterns (register operands)

 Easier to break apart compound instructions versus coalescing them

 Finalizer is available to identify and coalesce instructions on the platform

 Standard may see extensions to better accommodate DSP

 NOT SHOWN: To achieve full throughput you need to unroll the loops

 In excessive cases eventually may cause register pressure

CONCLUSIONS

 HSAIL is Scalable Heterogeneous System Methodology

 Solves H/W Integration and S/W Programming of Heterogeneous Systems

 A RISC-based Virtual Machine

 Many DSP Algorithms Can Be Efficiently Described in HSAIL

 Includes SIMD Fixed Point Types / F16 Vector Floating Point

 Restructured Algorithms Can Improve Performance

 Some DSP Operations May Be More Efficiently Described With Compound
Operations

 Common to many DSPs

 Lower Power (reduced loads)

 Easier For Compiler to Break Apart Compound Operations

 Additional Unrolling of Loops May Cause Register Pressure

20

MEMBERS DRIVING HSA
Founders

Promoters

Supporters

Contributors

Academic

ANY QUESTIONS?
 Of course there are, so go ahead

