Improving Music Source Separation based on DNNs through Data Augmentation and Network Blending
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Summary

Separation of music into instruments (“bass”, “drums”, “other”, “vocals”)

Two network architectures are described: feed-forward and recurrent
» Each of them yields state-of-the art results on SISEC DSD100

® Multi-channel Wiener filter

> Important post-processing step that improves performance
> Reduces flanging effects that can appear for single-channel WF
> Assumed signal model [2]
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Bidirectional LSTM Networks

® Second approach: Recurrent architecture with bidirect. LSTM layers

> Better incorporation of context information than supervectors

Our blending scheme is an extension of learned temporal fusion [4]

> Instead of linearly combining the systems after the MWF, we blend the
raw outputs of each DNN and perform afterwards a MWF post-processing

> Final MWF helps to reduce the interference and achieves better results

> Comparing the two schemes, we can observe that our fusion is on average

X(m7 f) — Sz(ma f> + Zl(m7 f)
with ¢ € Z, Z;(m, f) = ZjEI\i Si(m, f) and

0.1 dB better for SDR and 0.3 dB for th SIR than the learned temporal

> We blend both architectures to further improve performance fusion scheme proposed in [4]
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— Linear combination of raw outputs and MWF post-processing
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— Gives the best results that have been reported so far on DSD100 Si(m, f) ~ CN(0,v;(m, f)R;(f)) where v;(m, f) is the power-spectral g o o Bass : Orums Otter ; Vocals Accompariment
density (PSD) and R;(f) the time-invariant spatial covariance matrix. : b h : 6
® \We study the effect of data augmentation for the recurrent architecture — Hence. we assume a time-invariant. convolutive mixture : : z 4
> Experiment shows that even simple architectures can overfit — Reasonable for majority of music mixtures Mixture bi—di:ect. bi—dirt:ct. bi-direct. ReLU  Instrument £ I o ‘ 2
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Data augmentation during training avoids problem > MMSE estimator for S;(m, f) from X(m, f) is SEES L SIS FII L SIS L fAE
1 e \We trained three architectures which differ in #2BLSTM layers Figure 4: SDR improvement in dB for different music genres
Introduction Si(m, f)=vi(m, f)R;(f) (Z v;(m, f)Ry(f)) X(m, f) > Each BLSTM layer consists of 250 forward /backward LSTM cells (Test part of DSD100)
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> Input: stereo magnitude frames (frame size: 1024, overlap: 50%)

® Music Source Separation (MSS) = Separation of music into instrument tracks > PSDs and spatial covariance matrices are estimated from M consecutive

> Post-processing: multi-channel Wiener filter
frames as [2, 3]

> Received increasing attention over the last years e Recults: see Table 1

Comparison to Other Approaches

> Many applications require MSS: Karaoke, Upmixing, ... ZM ' 8,(m, £)8i(m, HH
L m= [/ ) [/ )

e Comparison of our networks to other methods from literature (NMF, DNN)
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® Popular MSS contest: Signal Separation Evaluation Campaign (SiSEC) ZM o:(m, f) Data Augmentation during Training
m:l 1 Y .5 Bass 1 . II)rulmsl . 10 . IOtI?erl - .5 - Yot?alsl - 20 . IAclzcomp?nillner:ntl .
> Regularly held source separation contest . : | o
 Moct popular separation subtask: Profecsionally-mixed musi — Weighted version of classical ML estimator ® Data augmentation is known to improve performance of DNNs Ol _E o @ 0 51 é@é Q@
Goal: S . “b. 0y " other” and ¢ <" — More weight put on TF bins for which we expect better SNR ® \We use the following data augmentation techniques on the fly when we create 5 EE@ QQ@? ) QQ% éég 2 E@@%@é? 5 QEEEéQ%@ s L@%%i
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Oal eparate music |n.to ass’, ~drums-, ~other and “vocals a mini-batch (mini-batch size: 10, sequence length: 500): T k g EIL o AR i nnnnl
— Train / test dataset consists of 50 songs each Feed-Forward Networks (FNN) > random swapping left /right channel for each instrument SR ‘ RS ‘ S ‘ RS AP
e Contribution of this paper is three-fold ® First approach: feed-forward architecture [1] > random scaling with uniform amplitudes from [0.25, 1.25], Figure 5: Comparison of different music source separation algorithms
» Description of our submissions to SiSEC 2016 contest R(CHDHL » random chunking into sequences for each instrument, and, (Test part of DSD100)
: : Rt REY  REY RE RE . . - :
— Results for feed-forward approach [1] with MWF post-processing - > random mixing of instruments from different songs.
— Results for new recurrent network structure (bi-directional LSTM) _ _ ® |n order to prove the effectiveness of the data augmentation, we also trained P
. . .. BLSTM-1 for the extraction of vocals without it Approach s Drums Other Vocals Acco Comments
» Proposal of using data augmentation for training SLEND o) 576 D393 ?27 V5 13' ’1*1 o
— Avoids overfitting to training data | ReLU ReLU ReLU ReLU ;;;t;u;dnem SDR in dB (Raw outputs) 628 SNMF [5, 6] 084 112 182 217 858 Q=25
. ixture agn. nstr. wor 253 _
— Esp. important for recurrent nets as they only use DSD100 Dev STFT Maan netr. - Network Dev Test [All Test [New artists] 558 dNMF [7] 091 187 243 256 888 Q=25
BL 0.91 0.35 0.77 ... DeepNMF[s] 188 211 264 275 890 Q=25
> Blending of two networks before MWF post-processing _ . . . Vocals  BLSTM-1 w/o data augm. 7.13 3.37 3.19 2 BLEND (MWF) 208 413 352 523 1170 A=025
_ COnSiderably improves performance ° FNN_l preV|OUS Sme|SS|On to SISEC 2015 7777777777 |§|:§TM:717V\7/i:Eh7C|§’E§§ljgfpi 77777 @}9 777777777 :}:59 77777777777777 %19 7777777777 23%“;5’ NUG [2] 272 389 3.18 455 10.29
> . - _ BL 6.57 6.82 6.49 _
— Gives best resu|ts on DSD]_OO Test that have SO far been reported Strl.chcure. ReLU network Wlth K 3 |ayers Accomp. BLSTM-1 w/o data augm. 13.33 9.71 9.53 Table 3: Comparlson on Test part Of DSD.ZOO
> Training material BLSTM-1 with data augm. 1223 9.93 9.64

— P =2-10Y training samples which are randomly generated
— Short instrument loops which are independent of DSD100

Table 2: Effect of data augmentation for BLSTM-1

MSS using Deep Neural Networks e Comparison of BLEND (MWF) to FNN-1

> Input: FFT size is 1024, C' = 3 non-overlapping context frames » We could gain 1.1 dB SDR since SiSEC 2015 competition

® Signal model for music source separation _ _ _ _ » Vocals and accompaniment gain through data augmentation
> Post-processing: single-channel Wiener filter ~ on average 0.2 dB if we consider all Test songs

Separations of all methods that particpated in SISEC MUS are available
http://sisecl7.audiolabs-erlangen.de

® FNN-2: newly trained network with following changes regarding FNN-2

> Structure: RelLU network with K = 4 layers

R 9 _ _ _ > Training material: P =1.2- 107 samples where we additionally use non-
x(n), sj(n), §;(n) € R* ... Stereo mixture/sources/source estimates in bleeding stems from MedleyDB and stems from SiSEC Dev

time domain with 7 := {B,D, 0, V} .| o . . .
T t: O =8 | text f th PCA pre-
denoting bass, drums, other and vocals "PH OYETAPPING EOMEEAE Trames Wi PTE-PIOTESSINg e Further improvement: Blending (+0.2 dB compared to BLSTM-3)

® Comparison of the two sets of DNNs

x(n) =sg(n) +sp(n) + sp(n) + sy(n) = ZiEI s;(n) — on average 0.35 dB if we only consider the subset of Test songs where
there is not a song of the same artist in the Dev part

e Notation
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