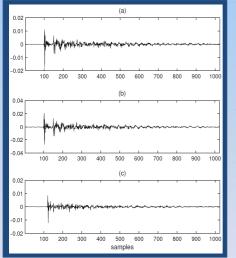

An Adaptive Filter with Gain and Time-shift Parameters for Echo Cancellation

Zhiping Zhang, Zhiqiang Wu Wright State University, U.S.A.

1. Introduction



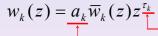
Motivation

To some hands-free acoustic systems, especially with separated loud-speakers and microphones, users would like to adjust the speakers volume or location. The adjustment may result in serious *feedback howling* if the changed echo path cannot be tracked in time.

2. Analysis of Echo Path Variation Caused by Loud-speaker Adjustment

The measurement was implemented in a quiet room $(3m \times 6m)$ with a set of loudspeaker and micro-phone, and M-sequence method [11] was employed.

The First Case: h¹


The speaker volume is set to a certain value and located one meter away to the microphone

The Second Case: h² The volume is raised

The Third Case: h³ The loudspeaker was moved one meter farther to the microphone while its volume is kept as the value in the first case

3. Parametric Adaptive Filter (PAF)

Z domain expression

– Time-shift parameter – Gain parameter

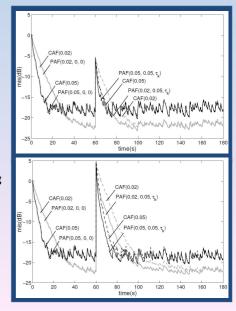
Temporal domain expression

 $y(k) = \underline{a_k} \overline{w}_k^T x_{k+\underline{\tau_k}}$

4. Adaptation Algorithm for PAF

Table 1: Adaptation Algorithm for PAF
Initialization:
$\bar{\mathbf{w}}_k = \mathbf{r} / \ \mathbf{r}\ _k$ r is a N-dim random vector.
$ \mathbf{x}_k ^2 = \sum_{i=0}^k x(i)^2$
a_k can be set as a reasonable positive value.
$\tau_k = 0 \qquad \qquad if \ 0 \le k < N$
Normalized filter update
$\bar{y}(k) = \bar{\mathbf{w}}_k^T \mathbf{x}_{k+\tau_k}$
$y(k) = a_k \bar{y}(k)$
e(k) = d(k) - y(k)
$ \mathbf{x}_{k+\tau_k} ^2 = \mathbf{x}_{k+\tau_k-1} ^2 + x(k+\tau_k)^2 - x(k+\tau_k-N)^2$
$c = \mu_{\bar{\mathbf{w}}} e(k) / a_k$
$\lambda_k = \sqrt{1 + 2c\bar{y}(k) + c^2 \mathbf{x}_{k+\tau_k} ^2}$
$\bar{\mathbf{w}}_{k+1} = (\bar{\mathbf{w}}_k + c\mathbf{x}_{k+\tau_k})/\lambda_k$
Gain update
$e(k)' = e(k)(1 - \mu_{\bar{\mathbf{w}}} \mathbf{x}_{k+\tau_k} ^2)$
$a_{k+1} = a_k \lambda_k + \mu_a e'(k)\bar{y}(k)$
Delay update
$\hat{e}_k(\Delta\tau)^2 = (d(k - \Delta\tau + \tau_k) - y(k))^2$
$E_k(\Delta \tau) = (1 - \mu_\tau) E_{k-1}(\Delta \tau) + \mu_\tau \hat{e}_k(\Delta \tau)^2$
$\hat{\tau}_k = \operatorname{argmin}_{\Delta \tau} E_k(\Delta \tau) \qquad -D \le \Delta \tau \le D$
If $\hat{\tau}_k$ has kept invariant more than a duration
$\tau_{k+1} = \hat{\tau}_k$

5. Experiment


 $mis(k) = 20 \log_{10}(||h_k - \hat{h}_k|| / ||h_k||)$

Gain changing scenario

The transfer function used in this scenario is switched from h^1 to h^2 at the 60*th* second

Gain and delay changing scenario

The transfer function used in this scenario is switched from h^1 to h^2 at the 60*th* second

