

Investigation on Log-linear Interpolation of Multi-domain Neural Network Language Model

Zoltán Tüske, Kazuki Irie, Ralf Schlüter, Hermann Ney

24. March 2016

Human Language Technology and Pattern Recognition Group Prof. Dr.-Ing. H. Ney Computer Science Department RWTH Aachen University, Germany

1 Outline

- Introduction
- Multi-domain neural network LM
 - Log-linear interpolation
 - Implementation
- Experiments
- Conclusions

2 Introduction

State-of-the-art language models (LM) are based on neural networks
 Better results if (linearly) interpolated with huge count-based LM

Usually count LMs are trained on different domains, then linear-interpolated
 Interpolation weights are optimized on target domain validation set
 Linear interpolation:

$$p(w|h) = \sum_j \lambda_j \cdot p_j(w|h)$$
 with $\sum_j \lambda_j = 1$

- \circ Where: w current word
 - h history
 - λ_j weight of jth model
- Optimized using expectation maximization (EM) algorithm
- Count models are suited to be linearly combined into one single model (with union of n-grams and recomputing back-off weights)

3 Motivation and Goals

Training multi-domain NNLM

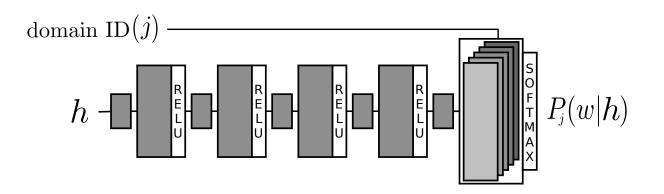
Inspired by the great success of multi-task training [Caruana 93]

Similar approach for NNLM as for count models

- Obtaining single model after interpolation of NNLMs
- No straightforward method to formulate linear interpolation of NNLMs as a single model
 - \circ Log-linear combination fits better

Initial investigation using feed-forward NNLM

Joint Model in This Study



Multiple posterior estimates

- Active output: selected by the domain of the input vector
- Hidden layers are shared between the domains
- Shared vocabulary, common softmax
- Similar as multilingual training in acoustic modeling:
 - Scanzio & Laface⁺ 08], [Veselý & Karafiát⁺ 12], [Tüske & Pinto⁺ 13], [Heigold & Vanhoucke⁺ 13], [Huang & Li⁺ 13]
 - Outputs are usually not comparable, different tied-triphone targets per language

 $P_i(w|h)$

- Special, domain dependent output layer is introduced
 - Separate weight matrices and biases allocated for our 11 different domains (j):

$$A_j = egin{bmatrix} \mathbf{i} \ a_{wj}^T \ \mathbf{i} \end{bmatrix}$$
 and $b_j = egin{bmatrix} \mathbf{i} \ b_{wj} \ \mathbf{i} \end{bmatrix}$

domain ID(j)

- Input BN: projection layer shared along the LM history (time-delay NN)
- Between-hidden-layer BN: low-rank factorization of the hidden layer outputs
- Output BN: no word-classes, direct estimation of 150k word posteriors
- ► Last layer of a neural network is a log-linear model with zeroth- and first-order features:

$$p_j(w|h) = rac{exp(a_{wj}^T \cdot y + b_{wj})}{\sum\limits_{w'} exp(a_{w'j}^T \cdot y + b_{w'j})}$$

 $\triangleright y = y(h)$: last BN output, a non-linear feature function of h shared between domains

4 Log-Linear Interpolation of NNLMs

Log-linear interpolation [Klakow 98]

$$p(w|h) = rac{1}{Z_\lambda} \prod_j p_j(w|h)^{\lambda_j}$$
 with $Z_\lambda = \sum_w \prod_j p_j(w|h)^{\lambda_j}$

Log-linear interpolation is a convex optimization problem

► With the proposed multi-domain NNLM:

$$\prod_j p_j(w|h)^{\lambda_j} = rac{\prod\limits_j exp(\lambda_j(a_{wj}^T \cdot y + b_{wj}))}{\prod\limits_j \sum\limits_{w'} exp(\lambda_j(a_{w'j}^T \cdot y + b_{w'j}))}$$

Results in:

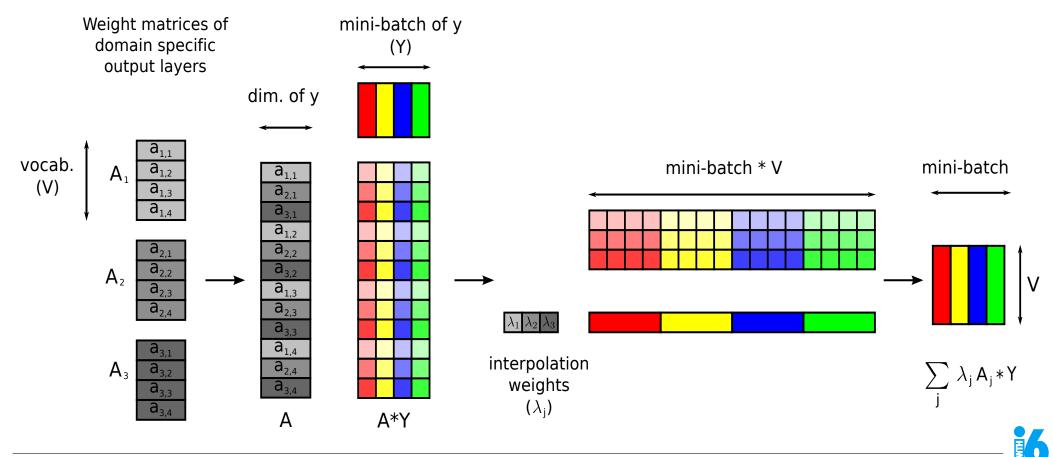
$$p(w|h) = rac{exp(ilde{a}_w^T \cdot y + ilde{b}_w)}{\sum\limits_{w'} exp(ilde{a}_{w'}^T \cdot y + ilde{b}_{w'})}$$
 where $ilde{a}_w = \sum\limits_j \lambda_j \cdot a_{wj}$ and $ilde{b}_w = \sum\limits_j \lambda_j \cdot b_{wj}$

Single neural network: *weighted sum* of the domain dependent linear layers

RNTH

5 Implementation

- ► The interpolation can easily be integrated into NN framework as a linear layer
- **\triangleright** The weight matrices (A_j) and biases should be row-wise interleaved
- Mini-batches (column-major format) should be re-interpreted:
 - > The interpolation layer performs V times non-overlapping convolution



6 Experimental Setups

- Tests on QUAERO English broadcast news and conversations corpus
- 150K vocabulary
- Dev: 40K, Test: 36K words
- Our data sets for language model training:

⊳ 3.1B:

- 11 sub-corpora, used as 11 output targets in multi-domain training
- Collected from Giga-words, IWSLT, WMT, Quaero, TED
- Perplexity after linear interpolation of Kneser-Ney smoothed count models: 132.7
- ⊳ 50M⊂3.1B:
 - $\circ\,$ Transcription of the acoustic data
 - $\circ\,$ Blog data, part of the best matching Quaero corpus,

⊳ 2M⊂50M:

- \circ Only the transcription of the acoustic data
- Acoustic model in the ASR experiments:
 - ▷ 12-layer rectified linear unit MLP, speaker independent, after MPE
 - Multilingually initialized MLP, adapted with 250h of English data

7 Experimental Results - (Re-)Optimizing Feed-Forward NNLM

Experiments on 50M corpus

- \triangleright Training time \sim 3.5 days on a single GPU, w/o word-classes
- Feeding the best matching 2M subcorpus into NN at the end of the epoch
- PPL measured without interpolation with count LM on development set

Optimizing the context

- ▷ 3 non-BN hidden layers with 1024 nodes
- Projection / between-hidden / before-output BN: 64 / 256 /128 nodes

N-gram	5	10	20	30
PPL	142.9	126.0	117.4	118.3

Experimental results - (Re-)Optimizing Feed-Forward NNLM

- ► Effect of discriminative pre-training (DPT) [Seide & Li⁺ 11]
- Optimizing BN, non-BN layer and mini-batch sizes
- 20-gram feed-forward MLP

n	on-BN	BN size		DPT	batch	PPL	
#	size	proj.	btw.hidden	output	ויזע	size	FFL
3		64	-	100		64	117.4
5	-	64		128			116.2
	1024 3						114.7
2		25 128	256			128	117.0
J							113.7
	2048			256			112.1
4	1024				+	64	111.5
4	4 5 2048						110.5
5							110.7

- Our previous best FFNN PPL: 130.9
- ► Our current best on this 50M corpus: LSTM-RNN, 100.5 [Sundermeyer & Ney⁺ 15]

Experimental results - Effect of More Data and Fine-Tuning

- \blacktriangleright Training LM on 3.1B words, single GPU ${\sim}20$ days, w/o word-classes
 - ▶ Learning rate adjusted by CV after every ~100M words
- \blacktriangleright Optional fine-tuning on matched subcorpora: 2M \subset 50M

LM	fine-t	PPL		
	50M	2M	FFL	
50M			110.5	
		×	109.0	
			129.0	
3B		×	96.6	
30	×		101.4	
	X	×	96.2	

- More (mismatched) data did not help immediately
- But led to a much better MLP initialization before fine-tuning with matched data
- ► Using multi-domain data led to over 10% rel. imp. compared to the best 50M result
- ► 50M LSTM-RNN: 100.5

Experimental results - Multi-Domain Training

• Multi-domain training, \sim 20 days on single GPU, w/o word-classes

LM	multi	log-lin.	fine-t	PPL	
	domain	interp.	50M	2M	FFL
50M				Х	109.0
3B			×	×	96.2
	×				133.1
	×		×	×	95.7*
	×	×			117.6
	×	×	×	×	94.3

*using the best matching output

- ► Log-lin. interp.: estimation of 11 parameters led to 10% rel. PPL improvement (133→118)
- Linear interpolation performed better: 114 PPL, but model cannot be merged (and easily fine-tuned)
- Fine-tuning the log-lin. interpolated NNLM led to better results, than taking the best fitting output
- ► Best: re-training multi-domain output on the BN of the best model followed by interpolation
 - ⊳ 92.0 PPL

8 Experimental results - ASR Experiments

- Lattice extraction with count model
- Lattice rescoring using rwthlm [Sundermeyer & Schlüter⁺ 14]
 - Traceback lattice approximation
 - Linear-interpolation between NNLM and count LM
- Measuring word error rate
 - ▷ After Viterbi (Vi.) or confusion network (CN) decoding of the lattices

Language Model	Dev			Eval		
	PPL	Vi.	CN	PPL	Vi.	CN
KN4	132.7	12.6	12.3	133.4	15.4	15.0
+ 50M FFNN	96.5	11.4	11.1	95.0	14.2	13.8
+ 3B, fine-tune	89.6	10.9	10.7	88.0	13.7	13.4
+ Multi-domain,log-lin,fine-tune	88.5	10.8	9.1	87.0	13.7	13.5
+ 50M LSTM	91.6	10.9	9.0	91.0	13.7	13.5

- Our improved 50M FFNN only slightly behind the LSTM
- ► Better initialization of FFNN (with the help of mismatched data): significant improvement
- FFNN is 3-4 point PPL better than LSTM (due to more data) but no WER improvement

9 Conclusions

- Re-optimized feed-forward LM: not so far from LSTM
- Multi-domain LM training implementation:
 - Fits naturally to log-linear interpolation
 - Interpolated models can be merged (like count models after lin.interp.)
- ► With the help of multi-domain data, better optimum can be reached with feed-forward NNLM

- ► TODOs:
 - Repeating the experiments with LSTM: would mismatched data also lead to better initialization?
 - Log-lin. interpolation: only a few parameters should be estimated
 Investigation on unsupervised LM adaptation

References

- [Caruana 93] R. Caruana. Multitask learning: A knowledge-based source of inductive bias. In Proc. of International Conference on Machine Learning (ICML), pp. 41–48, Amherst, MA, USA, June 1993. 4
- [Heigold & Vanhoucke⁺ 13] G. Heigold, V. Vanhoucke, A. Senior, P. Nguyen, M. Ranzato, M. Devin, J. Dean. Multilingual acoustic models using distributed deep neural networks. In *Proc. of IEEE Int. Conf. on Acoustics, Speech and Signal Processing*, pp. 8619–8623, 2013.
- [Huang & Li⁺ 13] J.-T. Huang, J. Li, D. Yu, L. Deng, Y. Gong. Cross-language knowledge transfer using multilingual deep neural network with shared hidden layers. In *Proc. of IEEE Int. Conf. on Acoustics, Speech and Signal Processing*, pp. 7304–7308, 2013. 5
- [Klakow 98] D. Klakow. Log-linear interpolation of language models. In *Proc. of International Conference on Spoken Language Processing (ICSLP)*, pp. 1695–1698, Sydney, Australia, Dec. 1998. 7
- [Scanzio & Laface⁺ 08] S. Scanzio, P. Laface, L. Fissore, R. Gemello, F. Mana. On the Use of a Multilingual Neural Network Front-End. In *Proc. Interspeech*, pp. 2711–2714, Brisbane, Australia, Sept. 2008. 5
- [Seide & Li⁺ 11] F. Seide, G. Li, X. Chen, D. Yu. Feature engineering in context-dependent deep neural networks for conversational speech transcription. In *Proc. IEEE Automatic Speech Recognition and Understanding Workshop (ASRU)*, pp. 24–29, Waikoloa, HI, USA, Dec. 2011. 11

[Sundermeyer & Ney⁺ 15] M. Sundermeyer, H. Ney, R. Schlüter. From feedforward to recurrent Istm neural networks for language modeling. *IEEE/ACM Transactions on Audio, Speech, and Language Processing*, Vol. 23, No. 3, pp. 517–529, March 2015. 11

- [Sundermeyer & Schlüter⁺ 14] M. Sundermeyer, R. Schlüter, H. Ney. rwthlm The RWTH Aachen University neural network language modeling toolkit. In *Proc. Interspeech*, pp. 2093–2097, Singapore, Sept. 2014. 14
- [Tüske & Pinto⁺ 13] Z. Tüske, J. Pinto, D. Willett, R. Schlüter. Investigation on cross- and multilingual MLP features under matched and mismatched acoustical conditions. In *Proc. of IEEE Int. Conf. on Acoustics, Speech and Signal Processing*, pp. 7349–7353, 2013. 5
- [Veselý & Karafiát⁺ 12] K. Veselý, M. Karafiát, F. Grézl, M. Janda, E. Egorova. The languageindependent bottleneck features. In *Proc. of IEEE Workshop on Spoken Language Technology*, pp. 336–341, 2012. 5