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2 Introduction

I State-of-the-art language models (LM) are based on neural networks

. Better results if (linearly) interpolated with huge count-based LM

I Usually count LMs are trained on different domains, then linear-interpolated

. Interpolation weights are optimized on target domain validation set

. Linear interpolation:

p(w|h) =
∑
j

λj · pj(w|h) with
∑
j

λj = 1

◦Where: w current word
h history
λj weight of jth model

. Optimized using expectation maximization (EM) algorithm

. Count models are suited to be linearly combined into one single model
(with union of n-grams and recomputing back-off weights)
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3 Motivation and Goals

I Training multi-domain NNLM

. Inspired by the great success of multi-task training [Caruana 93]

I Similar approach for NNLM as for count models

. Obtaining single model after interpolation of NNLMs

. No straightforward method to formulate linear interpolation of NNLMs
as a single model
◦ Log-linear combination fits better

I Initial investigation using feed-forward NNLM
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Joint Model in This Study
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I Multiple posterior estimates

. Active output: selected by the domain of the input vector

. Hidden layers are shared between the domains

. Shared vocabulary, common softmax

I Similar as multilingual training in acoustic modeling:

. [Scanzio & Laface+ 08], [Veselý & Karafiát+ 12], [Tüske & Pinto+ 13],
[Heigold & Vanhoucke+ 13], [Huang & Li+ 13]

. Outputs are usually not comparable, different tied-triphone targets per language

Tüske: Multi-domain NNLM 5 / 17 24. March 2016



R

E

L

U

S

O

F

T

M

A

X

R

E

L

U

R

E

L

U

R

E

L

U

I Special, domain dependent output layer is introduced

. Separate weight matrices and biases allocated for
our 11 different domains (j):

Aj =

 ...
aTwj...

 and bj =

 ...
bwj

...


I Three types of BN layers:

. Input BN: projection layer shared along the LM history (time-delay NN)

. Between-hidden-layer BN: low-rank factorization of the hidden layer outputs

. Output BN: no word-classes, direct estimation of 150k word posteriors

I Last layer of a neural network is a log-linear model with zeroth- and first-order features:

pj(w|h) =
exp(aTwj · y + bwj)∑

w′
exp(aTw′j · y + bw′j)

. y = y(h): last BN output, a non-linear feature function of h shared between domains
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4 Log-Linear Interpolation of NNLMs

I Log-linear interpolation [Klakow 98]

p(w|h) =
1

Zλ

∏
j

pj(w|h)λj with Zλ =
∑
w

∏
j

pj(w|h)λj

. Log-linear interpolation is a convex optimization problem

I With the proposed multi-domain NNLM:

∏
j

pj(w|h)λj =

∏
j

exp(λj(a
T
wj · y + bwj))∏

j

∑
w′
exp(λj(a

T
w′j · y + bw′j))

I Results in:

p(w|h) =
exp(ãTw · y + b̃w)∑

w′
exp(ãTw′ · y + b̃w′)

where ãw =
∑
j

λj · awj and b̃w =
∑
j

λj · bwj

I Single neural network: weighted sum of the domain dependent linear layers
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5 Implementation

I The interpolation can easily be integrated into NN framework as a linear layer

I The weight matrices (Aj) and biases should be row-wise interleaved

I Mini-batches (column-major format) should be re-interpreted:

. The interpolation layer performs V times non-overlapping convolution
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6 Experimental Setups

I Tests on QUAERO English broadcast news and conversations corpus
I 150K vocabulary
I Dev: 40K, Test: 36K words
I Our data sets for language model training:

. 3.1B:
◦ 11 sub-corpora, used as 11 output targets in multi-domain training
◦ Collected from Giga-words, IWSLT, WMT, Quaero, TED
◦ Perplexity after linear interpolation of Kneser-Ney smoothed count models: 132.7

. 50M⊂3.1B:
◦ Transcription of the acoustic data
◦ Blog data, part of the best matching Quaero corpus,

. 2M⊂50M:
◦ Only the transcription of the acoustic data

I Acoustic model in the ASR experiments:
. 12-layer rectified linear unit MLP, speaker independent, after MPE
. Multilingually initialized MLP, adapted with 250h of English data
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7 Experimental Results - (Re-)Optimizing Feed-Forward NNLM

I Experiments on 50M corpus

. Training time ∼3.5 days on a single GPU, w/o word-classes

. Feeding the best matching 2M subcorpus into NN at the end of the epoch

I PPL measured without interpolation with count LM on development set

I Optimizing the context

. 3 non-BN hidden layers with 1024 nodes

. Projection / between-hidden / before-output BN: 64 / 256 /128 nodes

N-gram 5 10 20 30
PPL 142.9 126.0 117.4 118.3

Tüske: Multi-domain NNLM 10 / 17 24. March 2016



Experimental results - (Re-)Optimizing Feed-Forward NNLM

I Effect of discriminative pre-training (DPT) [Seide & Li+ 11]

I Optimizing BN, non-BN layer and mini-batch sizes

I 20-gram feed-forward MLP

non-BN BN size
DPT

batch
PPL

# size proj. btw.hidden output size
3

1024

64

256

128
-

64
117.4

5 116.2

3

128 256

114.7
128 117.0

+ 64

113.7
2048 112.1

4
1024 111.5

2048
110.5

5 110.7

I Our previous best FFNN PPL: 130.9

I Our current best on this 50M corpus: LSTM-RNN, 100.5 [Sundermeyer & Ney+ 15]
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Experimental results - Effect of More Data and Fine-Tuning

I Training LM on 3.1B words, single GPU ∼20 days, w/o word-classes

. Learning rate adjusted by CV after every ∼100M words

I Optional fine-tuning on matched subcorpora: 2M ⊂ 50M

LM
fine-tuning

PPL
50M 2M

50M
110.5

× 109.0

3B

129.0
× 96.6

× 101.4
× × 96.2

I More (mismatched) data did not help immediately

I But led to a much better MLP initialization before fine-tuning with matched data

I Using multi-domain data led to over 10% rel. imp. compared to the best 50M result

I 50M LSTM-RNN: 100.5
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Experimental results - Multi-Domain Training

I Multi-domain training, ∼20 days on single GPU, w/o word-classes

LM
multi log-lin. fine-tuning

PPL
domain interp. 50M 2M

50M × 109.0*

3B

× × 96.2*
× 133.1*
× × × 95.7*
× × 117.6*
× × × × 94.3*

*using the best matching output

I Log-lin. interp.: estimation of 11 parameters led to 10% rel. PPL improvement (133→118)
I Linear interpolation performed better: 114 PPL, but model cannot be merged

(and easily fine-tuned)
I Fine-tuning the log-lin. interpolated NNLM led to better results, than

taking the best fitting output

I Best: re-training multi-domain output on the BN of the best model followed by interpolation

. 92.0 PPL
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8 Experimental results - ASR Experiments

I Lattice extraction with count model

I Lattice rescoring using rwthlm [Sundermeyer & Schlüter+ 14]

. Traceback lattice approximation

. Linear-interpolation between NNLM and count LM

I Measuring word error rate

. After Viterbi (Vi.) or confusion network (CN) decoding of the lattices

Language Model Dev Eval
PPL Vi. CN PPL Vi. CN

KN4 132.7 12.6 12.3 133.4 15.4 15.0
+ 50M FFNN 96.5 11.4 11.1 95.0 14.2 13.8
+ 3B, fine-tune 89.6 10.9 10.7 88.0 13.7 13.4
+ Multi-domain,log-lin,fine-tune 88.5 10.8 9.1 87.0 13.7 13.5
+ 50M LSTM 91.6 10.9 9.0 91.0 13.7 13.5

I Our improved 50M FFNN only slightly behind the LSTM

I Better initialization of FFNN (with the help of mismatched data): significant improvement

I FFNN is 3-4 point PPL better than LSTM (due to more data) but no WER improvement
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9 Conclusions

I Re-optimized feed-forward LM: not so far from LSTM

I Multi-domain LM training implementation:

. Fits naturally to log-linear interpolation

. Interpolated models can be merged (like count models after lin.interp.)

I With the help of multi-domain data, better optimum can be reached with feed-forward NNLM

I TODOs:

. Repeating the experiments with LSTM: would mismatched data
also lead to better initialization?

. Log-lin. interpolation: only a few parameters should be estimated
◦ Investigation on unsupervised LM adaptation
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