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Motor Imagery Brain Signals
 Problem: Classifying motor imagery brain signals (imagined 

movement of limbs)
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Motor Imagery Brain Signals
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 Goal: Use less data and efficient
algorithms to support real-time
BCI.

 Approach:
 Exploit sparse characteristics of

EEGs.

 Energies in different frequency
sub-bands of the Wavelet
Packet decomposition of EEG
trials from few electrodes near
the sensorimotor cortex.



Related works

 Using Wavelet transforms to extract features. (G. Garcia et al. 2003)

 Using Autoregressive coefficients (R. Boostani, et al. 2007)

 Most related work

Sparse representation-based classification scheme for motor imagery-
based brain–computer interface systems(Y Shin, et al. 2012)
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Outline

 EEG characteristics

 Feature extraction technique

 Proposed method based on sparse characteristics of EEG signals

 Results

 Conclusion
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EEG Characteristics 

 Two types of rolandic mu rhythm can be distinguished in the alpha band.

1. The lower-frequency mu rhythm between 8-10 Hz.

2. The higher frequency mu rhythm between 10-13 Hz.
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EEG Characteristics 

 Event-driven changes in the power of the EEG signals in particular 
frequency sub-bands are shown to improve the performance of BCI. 
(Pfurtschler 2003) 

 In this paper we use energies, related to different frequency sub-
bands motivated by the existence of different levels within the alpha 
band. 

Global SIP 2015

7



Pre-processing

 One of the most promising techniques in EEG signal processing is Common
Spatial Patterns (CSP)[Ramoser-2000].

 CSP aims to project the data along a direction for which the trials from one
class have maximum variance and the trials from the other class have
minimum variance.
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Wavelet Packet Decomposition

 Using time-frequency methods for non-stationary signals such as 
EEG can improve the performance of the classification techniques. 

 Wavelet Packet Decomposition can be described using the filter-bank 
approach.

Fig-1 Wavelet Packet Decomposition Global SIP 2015
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Feature Extraction

Fig 2 Energies are computed In 16 frequency sub-bands
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Feature Extraction

 The entropy of a signal 𝑧𝑧 is calculated from the wavelet coefficients, using

𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸 𝑧𝑧 = −∑𝑖𝑖 𝑠𝑠𝑖𝑖2 log 𝑠𝑠𝑖𝑖2

where 𝑠𝑠𝑖𝑖is the 𝑖𝑖-th wavelet coefficient of 𝑧𝑧 obtained from WPT. 
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sparse representation of EEG signals

 In this work, we approximate the measurement vectors by
linear combinations of a small number of atoms from a
dictionary.
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sparse representation of EEG signals

Therefore, the test signal is approximated using 𝐾𝐾 atoms from the 
dictionary as

𝑥𝑥 = 𝛼𝛼𝜆𝜆1𝑤𝑤𝜆𝜆1 + 𝛼𝛼𝜆𝜆2𝑤𝑤𝜆𝜆2 + ⋯+ 𝛼𝛼𝜆𝜆𝑘𝑘𝑤𝑤𝜆𝜆𝑘𝑘

where Λ = 𝜆𝜆1, 𝜆𝜆2, … , 𝜆𝜆𝑘𝑘 , 𝑘𝑘 = 1, … ,𝐾𝐾 is the support of the sparse 
vector.
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sparse representation of EEG signals

 Training samples from 𝑀𝑀 classes generate 𝑀𝑀 sub-dictionaries of 
a 𝐵𝐵 × 𝑁𝑁 dictionary 𝐴𝐴,
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sparse representation of EEG signals

 After obtaining the sparse representation of a test signal, it can be classified by computing
residuals as
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sparse representation of EEG signals

 To recover the sparse vector 𝛼𝛼, we need to solve the following optimization problem:

𝑚𝑚𝑖𝑖𝐸𝐸 𝛼𝛼 0

𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑤𝑤𝑐𝑐𝐸𝐸 𝐸𝐸𝐸𝐸 𝐴𝐴𝛼𝛼 = 𝑥𝑥

 This problem is generally NP-hard. It can be written as

𝑚𝑚𝑖𝑖𝐸𝐸 𝐴𝐴𝛼𝛼 − 𝑥𝑥 2

𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑤𝑤𝑐𝑐𝐸𝐸 𝐸𝐸𝐸𝐸 𝛼𝛼 0 ≤ 𝐾𝐾0

where 𝐾𝐾0 is an upper bound on the sparsity level.

 To solve the optimization problem, Orthogonal Matching Pursuit (OMP) greedy 
algorithm is used.
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Methodology
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Dataset

dataset 4a: provided by Fraunhofer FIRST, Intelligent Data Analysis Group and 
the Charite-University Medicine Berlin, Department of Neurology, 
Neurophysics Group.

 This data set consists of signals of five healthy subjects. 

The visual 
indicator lasts 
for 3.5 seconds 

a rest period 
begins with a 

random length of 
1.75 to 2.25 

seconds.

Global SIP 2015
18



Dataset

Fig 3-a Position of all the 118 electrode Fig 3-b Position of the five electrodes that are 
used.
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Results

Features Subject 1 Subject 2 Subject 3 Subject 4 Subject 5

Wavelet
Coefficients

64.46 73.89 54.11 75.71 64.96

Energy 64.79 85.50 61.51 73.11 59.36

Energy &
Entropy

64.71 89.71 64.25 93.07 83.71

Method proposed 
by Y. Shin (2012)

57.29 87.25 60.14 75.07 83.43

Table 1 Classification Accuracy rate (%)

Global SIP 2015
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Conclusion

 In this work, we proposed an algorithm to classify motor imagery 
EEG signals to support real time BCI.

 Dimensionality is reduced by selecting only five electrodes. 

 We leverage the Sparse representation of the EEG trials in a 
multiclass dictionary learned from wavelet characteristics of the 
signals.  

 Energy and Entropy related features enables efficient classification.
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Conclusion

 This underscores the relevance of the energies and their distribution 
in different frequency sub-bands. 
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CSP

 Covariance matrices are transformed Using a whitening 
transformation derived from the eigenvector and eigenvalue 
factorization of the composite spatial covariance to 𝐶𝐶1and 𝐶𝐶2.

 𝐶𝐶1 = 𝑉𝑉Σ1𝑉𝑉𝑇𝑇and 𝐶𝐶2 = 𝑉𝑉Σ2𝑉𝑉𝑇𝑇 ,then Σ1 + Σ2 = 1, 

 where 𝑉𝑉 Is the eigenvector matrix and Σ1and Σ2are the digonalized
eigenvalue matrix.

 Hence:

The eigenvectors corresponds to the largest eigenvalue of one class, 
also corresponds to the smallest eigenvalue of the second group. 
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