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Smart Grids 



Business 

•  Monitoring 
•  Load balancing, prediction, profiling etc  

•  Billing 
•  Variable pricing  

•  Data utilization 
•  New business opportunities (e-commerce, customization, smart 

home) 
•  New concepts 

•  Micro-grids, virtual grids, brokers, auctions, dynamic players 
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Privacy issues 

•  Smart meters: limited devices 
•  Collects data every 15 mins (100 ms by design) 
•  Dutch Parliament Bill, 2009: optional deployment 

•  What is the problem? 
•  Long list of security issues (devices, sca, protocols…) 
•  Privacy is our focus 

Erkin, Z., Troncoso-Pastoriza, J.R., Lagendijk, R.L., Perez-Gonzalez, F., "Privacy-preserving data 
aggregation in smart metering systems: an overview," Signal Processing Magazine, IEEE , vol.30, no.2, 
pp.75,86, March 2013



Data Aggregation 

•  Utility provider 
•  Aggregator(s) 
•  Households 

•  Can we compute aggregated data without learning individual 
consumption?  
•  Spatial? 
•  Temporal? 
•  Missing data? 



Prior Work 

•  GJ10: homomorphic encryption and secret sharing 
•  Very inefficient 

•  KDK11: ElGamal 
•  A look-up table is necessary and thus, the range  

•  ET12: Modified homomorphic encryption 
•  Requires 3rd party in case of missing data 

F. D. Garcia and B. Jacobs, “Privacy-friendly energy-metering via homomorphic encryption,” in 
Proc. 6th Workshop Security and Trust Management (STM 2010), (LNCS), vol. 6710, pp. 226–238.

K. Kursawe, G. Danezis, and M. Kohlweiss, “Privacy-friendly aggregation for the smart-grid,” 
in Privacy Enhanced Technologies Symposium, Waterloo, Canada, 2011, pp. 175–191.

Z. Erkin and G. Tsudik, “Private computation of spatial and temporal power consumption with 
smart meters,” in Proc. Int. Conf. Applied Cryptography and Network Security, Singapore, 26–29 
June 2012, pp. 561–577.



Additive Homomorphism 

•  Some cryptosystems preserve structure after encryption. 

Additive Homomorphism (Paillier ‘99)

Pascal Paillier, Public-Key Cryptosystems Based on Composite Degree Residuosity Classes. 
EUROCRYPT 1999: 223-238

n = p · q
Public key: (g, n)

Private key: (� = lcm(p� 1, q � 1))

Epk(m, r) = gm · rn mod n2

(an)� mod n2
= 1



A New Scheme 

•  Groups 
•  Aggregates data over groups and sub-groups 

•  Households, schools, shops, hospitals etc 

•  Dynamic Environment 
•  Should cope with missing data 

•  Efficiency 
•  Fast enough for almost real time processing (100ms) 



Scenario 



Chinese Remainder Theorem 

•  Chinese army! How to count that many soldiers? 

•  Group them 
•  groups of size 11,13 and 7  and count the remaining soldiers  
•  There is a unique solution in 11x13x7 

•  X mod 11 = 5 
•  X mod 13 = 3 
•  X mod 7 = 2 
•  X= 5x(13x7x4)+3x(11x7x12)+2x(11x13x5)= 6022 mod 1001= 16 



Protocol 
•  Set-up UP:  

•  Generates a key pair and publishes the public key 
•  Generates a prime number for each group and broadcasts 

•  Households: 
•  Find a partner and create a secret key 

•  Protocol 
•  Household: 

•   Prepares the input using CRT, encrypts and sends it to  A 
•  A: aggregates data and sends it to UP 
•  UP: 

•  Aggregate received encrypted messages  
•  Using the primes, compute the group consumptions 

Epk(m
0
1, r) = gm

0
1 · rn · hn�↵

mod n2

Epk(m
0
2, r) = gm

0
1 · rn · hn+↵

mod n2

Epk(m, r) = gm · rn mod n2



Obtaining consumptions per group 

•  Correct parameter use is checked.  
•  Different ideas: UP or A can perform some additional computations 

•  Individual measurements cannot be obtained 
•  Sub-groups of size 2 (can be generalized) 

TG1 :=

X

i

m0
i mod pk

Epk(T ) = Epk(
X

i

m0
i)



Dynamic Environment? 

•  Adding a new household is straightforward 
•  Couple 2 new ones 
•  One real, one dummy realized by another households 

•  Removing (malfunction) 
•  Single household 

•  The other partners data should be dropped too 
•  A group is missing 

•  UP performs a correction computation 



Efficiency TABLE II
THE NUMBER OF OPERATIONS OVER mod n2 FOR UP , A AND Hi IN EACH STAGE OF THE PROTOCOL.

Multiplication Exponentiation Decryption Hashing Communication
Setup UP - K - - K

Reporting A - - - N -
Hi 3 2 - 1 1

Aggregation UP - - - 1 -
A N - - - 1

Computation UP - - 1 - -

TABLE III
COMPLEXITY ANALYSIS OF SEVERAL APPROACHES FOR DATA AGGREGATION PER PARTIES: SMART METER(SM), AGGREGATOR(A) AND UTILITY

PROVIDER(UP) [2].

Garcia&Jacobs [9] Kursawe et. al [5] Erkin&Tsudik [16] Ács&Castelluccia [8] Proposed
Operations SM A SM A SM A SM A SM A UP

Paillier (2048 bits) DH Group (256 bits) Paillier (2048 bits) HE (32 bits) Paillier (2048 bits)
Encryption O(N) - - - O(1) - - - O(1) - -
Decryption O(1) - - - - O(1) - - - - O(1)

Multiplication - O(N2
) - O(N) - O(N) - O(1) - O(N) -

Exponentiation - - O(1) - - - - - O(1) - O(K)

Addition - - - - - - O(1) O(N) - - -
Subtraction - - - - - - - O(1) - - -
Communication O(N) O(N2

) O(N) O(N2
) O(1) O(N) O(1) O(N) O(1) O(1) O(K)

VI. CONCLUSION

Data aggregation is an important computation step for smart
metering. The dynamic nature of the smart meters, requirement
for working in fine granularity and limited computational
resources make it very challenging to design a cryptographic
protocol for secure data aggregation where it is possible to
cope with missing smart meter inputs. In this paper, we
propose a cryptographic protocol for calculating total con-
sumptions not only for the whole neighbourhood but also
smaller groups, which might be essential for time dependent
pricing, within a single execution. The protocol deals with
missing data easily, thanks to the CRT, and is very suitable to
deploy in real world due to its simplicity.
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Conclusion 

•  A data aggregation protocol 
•  Groups and sub-groups 
•  Dynamic (addition and removing) 
•  Efficient (single encryption) 

•  There is no need to have an external (3rd) party 

•  Statistical computations can be achieved 

•  Future work: 
•  Implementation on a test-bed 
•  More complex functions can be build upon  



GJ10 
Secret Sharing and HE 

Alice Bob Charles

•  Keep one share for yourself, encrypt other two 
•  UP adds them up (HE), sends you back 
•  You decrypt and add your share and send it to UP 
•  UP adds up all data 
F. D. Garcia and B. Jacobs, “Privacy-friendly energy-metering via homomorphic encryption,” in 
Proc. 6th Workshop Security and Trust Management (STM 2010), (LNCS), vol. 6710, pp. 226–238.



KDK11 
Masking and Brute Forcing 

•  Assumption: UP roughly knows the total; checks for equality 
•  4 protocols to derive random values 

•  Secret sharing 
•  3x DH and bilinear maps 

Alice :gm1,t+r1

Bob :gm2,t+r2

Charles :gm3,t+r3

r1 + r2 + r2 = 0

K. Kursawe, G. Danezis, and M. Kohlweiss, “Privacy-friendly aggregation for the smart-grid,” 
in Privacy Enhanced Technologies Symposium, Waterloo, Canada, 2011, pp. 175–191.



ET12 
Modified HE 

•  Spatio-temporal consumption 
•  Time-stamps 
•  Efficient: Paillier, Hash, PRF 
•  Cannot deal with missing data (external party needed) 

Z. Erkin and G. Tsudik, “Private computation of spatial and temporal power consumption with 
smart meters,” in Proc. Int. Conf. Applied Cryptography and Network Security, Singapore, 26–29 
June 2012, pp. 561–577.


