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Demixing problem — Motivation

What is demixing and why do we care?

Image credits: NASA

Another example



Demixing problem — Examples

Demixing problem is special of interest of the numerous applications
ranging from

signal processing, astronomy, computer vision, and machine learning

Examples
1 Morphological Component Analysis (MCA)
2 Separation of foreground and background in video

3 Robust PCA



Demixing problem — Definition

In simple form, demixing involves disentangling two (or more)
constituent signals from observations of their linear superposition:

x = Φw + Ψz

Φ and Ψ are incoherent orthonormal bases of Rn,
w , z ∈ Rn are the corresponding basis coefficients

Goal: reliably recover the constituent signals (equivalently, their
basis representations w and z) from the superposition signal x .



Four problems

y ∈ Rm×1, A ∈ Rm×n,m� n

Compressive sensing (Linear inverse problem)

y = Ax

where x ∈ Rn s.t. ‖x‖0 ≤ s.

Linear demixing problem

y = A (Φw + Ψz)

where Φ and Ψ are incoherent bases in Rn, and w , z ∈ Rn are the
basis coefficients s.t. ‖w‖0 ≤ s and ‖z‖0 ≤ s.

Nonlinear signal recovery

y = g(Ax)

where g denotes an element wise nonlinear link function.

Nonlinear demixing problem – Our focus in this talk

y = g(A (Φw + Ψz))



Challenges in (nonlinear) demixing Problem

1 Fundamental identifiability issue (Linear demixing)

number of unknowns (2n) is greater than the number of observations
(n).
remedy: some type of incoherence between the constituent signals (or
more specifically, between the corresponding bases Φ and Ψ).

2 Limited number of measurements

y = Ax , x is superposition signal and A ∈ Rm×n denotes the
measurement operator with m� n.
remedy: structural assumptions on the constituent signals.

3 Nonlinear observation model

y = g(Ax) + e, x is superposition signal and e ∈ Rm denotes the
additive noise.
remedy: The subject of this talk.



Nonlinear Signal Recovery

Formulation with additive noise

y = g(Ax) + e

where g denotes an element wise nonlinear link function and e ∈ Rm

represents the noise.

Nonlinear Signal recovery
1 1-bit compressive sensing → modeling high speed ADC’s
2 phase retrieval → modern astronomical imaging systems
3 nonlinear matrix completion → recommender systems



Nonlinear Demixing Problem — Formulation

General formulation

y = g(A (Φw + Ψz)) + e (1)

Φ and Ψ are incoherent bases in Rn

w , z ∈ Rn are the basis coefficients such that. ‖w‖0 ≤ s and ‖z‖0 ≤ s
e ∈ Rm denotes the additive noise.

The goal is to recover w and z (constituent signals)

Definition (ε-incoherence)

The orthonormal bases Φ and Ψ are said to be ε-incoherent if:

ε = sup
‖u‖0≤s, ‖v‖0≤s
‖u‖2=1, ‖v‖2=1

|〈Φu,Ψv〉|.



Nonlinear Demixing Problem — First Scenario

We consider two scenarios:
1 In the first scenario, the model is given by

y = g(A (Φw + Ψz))

g is unknown and odd function. It can be non-smooth and
non-invertible
A with i.i.d standard normal entries
no additive noise
We introduced an algorithm called OneShot 1.
Sample complexity result
Suppose we fix κ > 0 as a small constant, and suppose that the
incoherence parameter ε = cκ for some constant c, and that the
number of measurements scales as:

m = O
( s

κ2
log

n

s

)
.

1M. Soltani and C. Hegde, Demixing, Sparse Signals from Nonlinear Observations,
Asilomar Conference on Signals, Systems, and Computers, November 2016.



Algorithms — Beyond OneShot

Disadvantages of OneShot:
1 sparse components are recovered only up to an arbitrary scale factor
2 leading to high estimation errors in practice
3 its sample complexity is inversely dependent on the estimation error

To solve these problems, we propose a different, iterative algorithm
for recovering the signal components

Demixing with Hard Thresholding (DHT)



Algorithms — Second Scenario

In the second scenario, the model is given by

y = g(A (Φw + Ψz)) + e

g is known and its derivative is strictly bounded either within a
positive, or within a negative interval
A with independent isotropic rows
A with independent subgaussian isotropic rows
additive noise is assumed

By defining Γ = [Φ Ψ] and t = [w ; z ], and Θ(x) =
∫ x
∞ g(u)du, DHT

tries to solve the following optimization problem (F (t) : R2n → R):

min
t∈R2n

F (t) =
1

m

m∑
i=1

Θ(aTi Γt)− yia
T
i Γt

s. t. ‖t‖0 ≤ 2s.



Algorithms — Second Scenario

Algorithm 1 Demixing with Hard Thresholding DHT

Inputs: Bases Φ and Ψ, measurement matrix A, link function g , measurements
y , sparsity level s, step size η′.
Outputs: Estimates x̂ = Φŵ + Ψẑ , ŵ , ẑ
Initialization:(
x0,w0, z0

)
← arbitrary initialization

k ← 0
while k ≤ N do

tk ← [wk ; zk ] {Forming constituent vector}
tk1 ← 1

mΦTAT (g(Axk)− y)
tk2 ← 1

mΨTAT (g(Axk)− y)
∇F k ← [tk1 ; tk2 ] {Forming gradient}
t̃k = tk − η′∇F k {Gradient update}
[wk ; zk ]← P2s

(
t̃k
)

{Projection}
xk ← Φwk + Ψzk {Estimating x̂}
k ← k + 1

end while
Return: (ŵ , ẑ)←

(
wN , zN

)



Some definitions — Second Scenario

Definition (Subgaussian random variable)

A random variable X is called subgaussian if it satisfies the following:

E exp

(
cX 2

‖X‖2ψ2

)
≤ 2,

where c > 0 is an absolute constant and ‖X‖ψ2 denotes the ψ2-norm
which is defined as follows:

‖X‖ψ2 = sup
p≥1

1
√
p

(E|X |p)
1
p .

Definition (Isotropic random vectors)

A random vector-valued variable v ∈ Rn is said to be isotropic if
EvvT = In×n.



Some definitions — Second Scenario

Definition (Cross-coherence)

The cross-coherence parameter between the measurement matrix A and
the dictionary Γ = [Φ Ψ] is defined as follows:

ϑ = max
i ,j

aTi Γj

‖ai‖2
,

where ai and Γj denote the i th row of A and the j th column of Γ.

Definition ( Restricted Strong Convexity/Smoothness)

A loss function f satisfies (RSC/RSS) if:

m4s ≤ ‖∇2
ξ f (t)‖ ≤ M4s , t ∈ R2n,

where ξ = supp(t1) ∪ supp(t2), for all ‖ti‖0 ≤ 2s and i = 1, 2. Also, m4s

and M4s are (respectively) called the RSC and RSS constants.



Algorithms — Second Scenario

Theorem (Performance of DHT)

Consider the model y = g(A (Φw + Ψz)) + e. Suppose that the
corresponding objective function F satisfies the RSS/RSC properties with
constants M6s and m6s on the set J with ‖J‖0 ≤ 6s such that
1 ≤ M6s

m6s
≤ 2√

3
. Choose a step size parameter η′ with 0.5

M6s
< η′ < 1.5

m6s
.

Then, DHT outputs a sequence of estimates (wk , zk) such that the
estimation error of the true constituent vector, t∗ = [w∗; z∗] satisfies the
following upper bound (in expectation) for any k ≥ 1:

‖tk+1 − t∗‖2 ≤ (2q)k ‖t0 − t∗‖2 + Cτ

√
s

m
, (2)

where q = 2
√

1 + η′2M2
6s − 2η′m6s and C > 0 is a constant that depends

on the step size η′ and the convergence rate q.



Algorithms — Second Scenario

Theorem (Sample complexity when the rows of A are isotropic)

Suppose that the rows of A are independent isotropic random vectors. In
order to achieve the requisite RSS/RSC properties of Theorem of DHT,
the number of samples needs to scale as: m = O(s log n log2 s log(s log n)),
provided that the bases Φ and Ψ are incoherent enough.

Theorem (Sample complexity when the elements of A are
subgaussian)

Assume that all assumptions and definitions in Theorem of DHT holds
except that the rows of matrix A are independent subgaussian isotropic
random vectors. Then, in order to achieve the requisite RSS/RSC
properties of Theorem DHT, the number of samples needs to scale as:
m = O

(
s log n

s

)
, provided that the bases Φ and Ψ are incoherent enough.



Algorithms — Second Scenario

Proof sketch

Assuming the defined objective function satisfies RSC/RSS.

Establishing linear convergence of DHT in expectation using
Khintchine inequality

‖tk+1 − t∗‖2 ≤ (2q)k ‖t0 − t∗‖2 + Cτ

√
s

m

Verifying the objective function satisfies RSC/RSS in two cases:
1 A with independent isotropic rows

using Uniform Rudelson’s inequality and Uniform symmetrization

2 A with independent subgaussian isotropic rows

using D-RIP argument

Please see the following for more details:
”M. Soltani and C. Hegde, Fast Algorithms for Demixing Sparse Signals from
Nonlinear Observations, arXiv:1608.01234.”



Sample complexity

Table: Summary of our contributions, and comparison with existing methods for
the concrete case where Φ is the identity and Ψ is the DCT basis. Here, s
denotes the sparsity level of the components, n denotes the ambient dimension,
m denotes the number of samples, and κ denotes estimation error.

Algorithms Sample complexity Running time Measurements Link function

LASSO[1] O( s
κ2 log n

s
) poly(n) Gaussian unknown

OneShot O( s
κ2 log n

s
) O(mn) Gaussian unknown

DHT O(s polylog n) O(mn log 1
κ

) Isotropic rows known

DHT O(s log n
s
) O(mn log 1

κ
) Subgaussian known

[1]. Y. Plan, R. Vershynin, and E. Yudovina. High-dimensional estimation with geometric constraints. arXiv preprint
arXiv:1404.3749, 2014.



Experimental Results

We compare OneShot and DHT with two other algorithms:

1 Nonlinear convex demixing with LASSO or NlcdLASSO. This
algorithm solves the following optimization problem:

min
z,w

‖x̂lin − (Φz + Ψw)‖2

subject to ‖w‖1 ≤
√
s, ‖z‖1 ≤

√
s.

(3)

2 Demixing with Soft Thresholding or DST. This algorithm solves the
following optimization problem:

min
t

1

m

m∑
i=1

Θ(aTi Γt)− yia
T
i Γt + β‖t‖1, (4)



Experimental Results — Synthetic data

Second Scenario — Link function, g is known

(a) DHT (b) DST

(c) OneShot (d) NlcdLASSO

Phase transition plots with cosine similarity as the criterion. Link
function is defined as g(x) = 2x + sin(x).



Experimental Results — Real data

Second Scenario — Link function, g is known

(a) Original x (b) Φ(ŵ) Ψ(ẑ)

Image credits: NASA and Convexity in Source Separation

Parameters:
n = 512× 512, s = 1000,m = 15000, g(x) = 1

2
1−e−x

1+e−x .



Conclusion

Considering the problem of demixing sparse signals from their
nonlinear measurements

Specifically, studying the more challenging scenario with a limited
number of nonlinear measurements

As our contribution:
1 proposing a fast algorithm for recovery of the constituent signals
2 supporting the proposed algorithm with the rigorous theoretical analysis
3 deriving nearly-tight upper bounds on their sample complexity
4 verifying experimentally the superiority of the proposed algorithms

compared to existing convex demixing methods both on synthetic and
real data


