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Demixing problem — Motivation

@ What is demixing and why do we care?

Image credits: NASA

@ Another example
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Demixing problem — Examples

@ Demixing problem is special of interest of the numerous applications
ranging from
e signal processing, astronomy, computer vision, and machine learning
@ Examples

© Morphological Component Analysis (MCA)
@ Separation of foreground and background in video

© Robust PCA

observation low-rank sparse



Demixing problem — Definition

@ In simple form, demixing involves disentangling two (or more)
constituent signals from observations of their linear superposition:

x=dw+Vz

e ® and WV are incoherent orthonormal bases of R”,
e w,z € R" are the corresponding basis coefficients

ow

e Goal: reliably recover the constituent signals (equivalently, their
basis representations w and z) from the superposition signal x.



Four problems

y ER™MLI AcR™ m<on
o Compressive sensing (Linear inverse problem)
y = Ax

where x € R" s.t. [|x|o <s.
@ Linear demixing problem

y =A(Pw + Vz)
where ® and WV are incoherent bases in R”, and w,z € R" are the
basis coefficients s.t. ||w|jo < s and ||z]jo < s.
@ Nonlinear signal recovery
y = g(Ax)

where g denotes an element wise nonlinear link function.
@ Nonlinear demixing problem — Our focus in this talk

y =g(A(dw + Vz))



Challenges in (nonlinear) demixing Problem

@ Fundamental identifiability issue (Linear demixing)
o number of unknowns (2n) is greater than the number of observations
(n).
e remedy: some type of incoherence between the constituent signals (or
more specifically, between the corresponding bases ¢ and V).
@ Limited number of measurements
e y = Ax, x is superposition signal and A € R™*" denotes the
measurement operator with m < n.
e remedy: structural assumptions on the constituent signals.

© Nonlinear observation model

o y = g(Ax) + e, xis superposition signal and e € R™ denotes the
additive noise.

o remedy: The subject of this talk.



Nonlinear Signal Recovery

@ Formulation with additive noise

y=g(Ax)+e

where g denotes an element wise nonlinear link function and e € R™
represents the noise.

@ Nonlinear Signal recovery
© 1-bit compressive sensing — modeling high speed ADC's
@ phase retrieval — modern astronomical imaging systems
© nonlinear matrix completion — recommender systems
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Nonlinear Demixing Problem — Formulation

@ General formulation

y=g(A(®dw+Vz))+e (1)

o & and V are incoherent bases in R”
e w,z € R" are the basis coefficients such that. |[w|jp < s and ||z]jp < s
o e € R™ denotes the additive noise.

@ The goal is to recover w and z (constituent signals)

Definition (e-incoherence)

The orthonormal bases ® and W are said to be e-incoherent if:

€= sup [{(Pu, Wv)|.
[ullo<s, ||v]lo<s
l[ull2=1, [[vl2=1




Nonlinear Demixing Problem — First Scenario

@ We consider two scenarios:
@ In the first scenario, the model is given by

y = g(A(dw + V¥z))

@ g is unknown and odd function. It can be non-smooth and
non-invertible

@ A with i.i.d standard normal entries

@ no additive noise

o We introduced an algorithm called ONESHOT ®.

o Sample complexity result

Suppose we fix kK > 0 as a small constant, and suppose that the
incoherence parameter € = ck for some constant ¢, and that the
number of measurements scales as:

m:O(%Iogg).

M. Soltani and C. Hegde, Demixing, Sparse Signals from Nonlinear Observations,
Asilomar Conference on Signals, Systems, and Computers, November 2016.



Algorithms — Beyond ONESHOT

o Disadvantages of ONESHOT:
@ sparse components are recovered only up to an arbitrary scale factor
@ leading to high estimation errors in practice
© its sample complexity is inversely dependent on the estimation error
@ To solve these problems, we propose a different, iterative algorithm
for recovering the signal components
o Demixing with Hard Thresholding (DHT)



Algorithms — Second Scenario

@ In the second scenario, the model is given by

y=g(A(dw +Vz))+e

e g is known and its derivative is strictly bounded either within a
positive, or within a negative interval

e A with independent isotropic rows

e A with independent subgaussian isotropic rows

e additive noise is assumed

e By defining I = [® W] and t = [w; 2], and ©(x) = [~ g(u)du, DHT
tries to solve the following optimization problem (F(t) : R?" — R):

1 m
in F(t)=—> ©(a/Tt)—ya/Tt
Jmin  F(t) = — 2 (aj Tt) — yia;

s.t. |tllo < 2s.



Algorithms — Second Scenario

Algorithm 1 Demixing with Hard Thresholding DHT

Inputs: Bases ¢ and W, measurement matrix A, link function g, measurements
y, sparsity level s, step size 77'.

Outputs: Estimates X = ow + Vz, w, Z

Initialization:

(x% w?, z%) <~ ARBITRARY INITIALIZATION

k<0
while kK < N do
tk — [wk; 24 {Forming constituent vector}

— LoTAT(g(Ax 9 -)
£k ’fwTAT( (AxK) — y)

VF" — [tk 4] {Forming gradient}
th =tk — /' VFk {Gradient update}
[wh; zK] < Pas (T¥) {Projection}
XK dwk +wzk {Estimating X}
k< k+1

end while

Return: (w,2) «+ (wV,z")




Some definitions — Second Scenario

Definition (Subgaussian random variable)

A random variable X is called subgaussian if it satisfies the following:

E ex X <92
PAIXIE, ) = °

where ¢ > 0 is an absolute constant and ||X||,, denotes the 1)>-norm
which is defined as follows:

1 1
[ X[y, = sup —=(E[X[P)>.
p>1 /P

7

Definition (Isotropic random vectors)

A random vector-valued variable v € R” is said to be isotropic if
Ew' = l«,.




Some definitions — Second Scenario

Definition (Cross-coherence)

The cross-coherence parameter between the measurement matrix A and
the dictionary ' = [® W] is defined as follows:

Tr.
9 =max L
i llaill2

where a; and [; denote the i*" row of A and the jth column of T.

A\

Definition ( Restricted Strong Convexity/Smoothness)

A loss function f satisfies (RSC/RSS) if:
mas < ||V2F(t)]| < Mas, t € R,

where £ = supp(t1) U supp(tz), for all ||ti|lo < 2s and i = 1,2. Also, mys
and My are (respectively) called the RSC and RSS constants.

A\




Algorithms — Second Scenario

Theorem (Performance of DHT)

Consider the model y = g(A(®w + Vz)) + e. Suppose that the
corresponding objective function F satisfies the RSS/RSC properties with
constants Mgs and mgs on the set J with ||J||o < 6s such that

1< An%s < % . Choose a step size parameter ) with ,(\]765 <n <

Then, DHT outputs a sequence of estimates (w*, zX) such that the
estimation error of the true constituent vector, t* = [w*; z*| satisfies the
following upper bound (in expectation) for any k > 1:

* *k S
IE4FY — t*)l2 < (29) ([0 — £l + Cy — (2)
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where q = 2\/1 + 72 Mgs — 2n'mgs and C > 0 is a constant that depends
on the step size i’ and the convergence rate q.




Algorithms — Second Scenario

Theorem (Sample complexity when the rows of A are isotropic)

Suppose that the rows of A are independent isotropic random vectors. In
order to achieve the requisite RSS/RSC properties of Theorem of DHT,
the number of samples needs to scale as: m = O(s log nlog? s log(s log n)),
provided that the bases ® and VW are incoherent enough.

Theorem (Sample complexity when the elements of A are
subgaussian)

Assume that all assumptions and definitions in Theorem of DHT holds
except that the rows of matrix A are independent subgaussian isotropic
random vectors. Then, in order to achieve the requisite RSS/RSC
properties of Theorem DH'T, the number of samples needs to scale as:
m=Q0 (s log g) , provided that the bases ® and W are incoherent enough.

v




Algorithms — Second Scenario

Proof sketch
@ Assuming the defined objective function satisfies RSC/RSS.

o Establishing linear convergence of DHT in expectation using
Khintchine inequality

S
19t = 2 < (29) [t = £7[|2 + Cry f -

@ Verifying the objective function satisfies RSC/RSS in two cases:
@ A with independent isotropic rows
o using Uniform Rudelson’s inequality and Uniform symmetrization
© A with independent subgaussian isotropic rows
o using D-RIP argument
Please see the following for more details:

"M. Soltani and C. Hegde, Fast Algorithms for Demixing Sparse Signals from
Nonlinear Observations, arXiv:1608.01234.”



Sample complexity

Table: Summary of our contributions, and comparison with existing methods for
the concrete case where ® is the identity and V is the DCT basis. Here, s
denotes the sparsity level of the components, n denotes the ambient dimension,
m denotes the number of samples, and k denotes estimation error.

Algorithms | Sample complexity | Running time | Measurements | Link function

LASSO[1] O(5log 2) poly(n) Gaussian unknown

ONESHOT O( log %) O(mn) Gaussian unknown
DHT O(s polylog n) O(mnlog =) | Isotropic rows known
DHT O(slog 2) O(mnlog <) Subgaussian known

[1]. Y. Plan, R. Vershynin, and E. Yudovina. High-dimensional estimation with geometric constraints. arXiv preprint

arXiv:1404.3749, 2014.




Experimental Results

We compare ONESHOT and DHT with two other algorithms:

@ Nonlinear convex demixing with LASSO or NLCDLASSO. This
algorithm solves the following optimization problem:

min Sin — (2 + W)
’ 3)

subject to [[wlly < V5, [zl < V5.

@ Demixing with Soft Thresholding or DST. This algorithm solves the
following optimization problem:

L1l T T
mtm m;@(ai rt)*)/lai rtJrBHt”l? (4)



Experimental Results — Synthetic data

@ Second Scenario — Link function, g is known
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@ Phase transition plots with cosine similarity as the criterion. Link
function is defined as g(x) = 2x + sin(x).



Experimental Results — Real data

@ Second Scenario — Link function, g is known

a) Original x

Image credits: NASA and Convexity in Source Separation

o Parameters:
n =512 x 512, s = 1000, m = 15000, g(x) =




Conclusion

@ Considering the problem of demixing sparse signals from their
nonlinear measurements

@ Specifically, studying the more challenging scenario with a limited
number of nonlinear measurements
@ As our contribution:
@ proposing a fast algorithm for recovery of the constituent signals
@ supporting the proposed algorithm with the rigorous theoretical analysis
© deriving nearly-tight upper bounds on their sample complexity
@ verifying experimentally the superiority of the proposed algorithms
compared to existing convex demixing methods both on synthetic and
real data



