
Recurrent Latent Variable Conditional
Heteroscedasticity

Sotirios P. Chatzis
Department of Electrical Engineering, Computer Engineering, and Informatics
Cyprus University of Technology sotirios.chatzis@cut.ac.cy

Introduction
•Generalized autoregressive conditional heteroscedasticity (GARCH) models are one of the most

successful families of approaches for volatility modeling in financial return signals.

•However, they employ quite rigid assumptions regarding the evolution of the variance.

•We address these issues by introducing a recurrent latent variable model, capable of capturing highly
flexible functional relationships for the variances.

•We derive a fast, scalable, and robust to overfitting Bayesian inference algorithm.

•Our approach avoids the need to compute per-data point variational parameters, but can instead
compute a set of global variational parameters valid for inference at both training and test time.

Motivation
• The changes in the log price of financial market indices (returns) may be non-linear, non-stationary

and/or heavy-tailed, while their marginal distributions may be asymmetric, leptokurtic and/or show
conditional heteroscedasticity.

•GARCH-type models make a specific assumption of what the functional dynamics of the volatility
look like; in reality, this functional form is completely unknown.

•Hence, we need a new modeling paradigm that infers this functional form from the data.

• To this end, we leverage recent advances in the field of deep learning, namely deep generative
models treated under the amortized variational inference (AVI) paradigm.

Deep Generative Models with Amortized Variational Infer-
ence
• Let us consider a datasetX = {xn}Nn=1 consisting ofN samples of some observed random variable
x; here, the modeled data constitute time-series signals of asset returns.

•We assume that the observed random variable is generated by some random process, involving an
unobserved continuous random variable z.

•We introduce a conditional independence assumption for the observed variables x given the corre-
sponding latent variables z; we adopt the conditional likelihood function p(x|z;θ).
• To perform Bayesian inference for the postulated model, we impose some prior distribution p(z;ϕ).

•We yield the following evidence lower bound (ELBO) expression:

log p(X) ≥ L(θ,ϕ,φ|X) =

N∑
i=1

{
− KL

[
q(zi;φ)||p(zi;ϕ)

]
+ Eq(zi;φ)[log p(xi|zi;θ)]

}
(1)

where KL
[
q||p
]

is the KL divergence, q(z;φ) is the sought approximate (variational) posterior over
the latent variable z, while Eq(z;φ)[·] is the (posterior) expectation of a function w.r.t. the random
variable z, the distribution of which is taken to be the posterior q(z;φ).

•AVI assumes that the likelihood function and the resulting latent variable posterior, q(z;φ), are
parameterized via deep neural networks (DNs).

• This is a non-conjugate construction; hence, Eq(zi;φ)[log p(xi|zi;θ)] and its gradient are intractable.

•AVI resolves these issues by drawing random samples of z ∼ q(z;φ), which are reparameterized
via an appropriate differentiable transformation of an (auxiliary) random noise variable ε:

L(θ,ϕ,φ|X) =

N∑
i=1

{
− KL

[
q(zi;φ)||p(zi;ϕ)

]
+

1

L

L∑
l=1

log p(xi|z
(l)
i ;θ)

}
(2)

• Specifically, considering a Gaussian posterior of the form

q(zi;φ) = N (zi|µφ(xi), diag σ2
φ(xi)) (3)

we have:
z
(l)
i = µφ(xi) + σφ(xi) · ε

(l)
i (4)

In Eq. (4), ε(l)i is white random noise, ε(l)i ∼ N (0, I), the µφ(xi) and σ2
φ(xi) are parameterized

via deep neural networks, and diagχ is a diagonal matrix with χ on its main diagonal.

•Nevertheless, the employed diagonal Gaussian assumption is quite limiting.

• To allow for capturing the true model posterior, we adopt the principle of normalizing flows.

•We postulate the auxiliary latent variables z′i, for which we consider that the Gaussian assumption
regarding their posterior is accurate.

•We perform a series of invertible transforms, {fk(·)}Kk=1, that converts the auxiliary latent variables
z′i to the original ones, zi.

• This yields a a tractable, non-Gaussian posterior over them, q(zi), which reads

logq(zi) = logq(z′i)−
∑
k

log det|∇fk| (5)

Proposed Approach: The ReLaVaCH model
•On this basis, ReLaVaCH postulates a conditional independence assumption, where the condition-

ing variables zn are some latent variables defined in a D-dimensional space with support in R:

xn|zn
i.i.d.∼ N (0, σ2n) (6)

where
σ2n = gθ(zn) (7)

and gθ(·) is a deep neural network (DN) comprising rectified linear units, with parameters set θ.

•We consider a latent variables prior that captures the temporal dynamics of volatility:

zn ∼ N (m̃n, diag(s̃
2
n)) (8)

where
[m̃n; s̃

2
n] = gϕ(ρn−1) (9)

while gϕ(·) is a DN comprising rectified linear units, with parameters set ϕ.

•Here, ρn−1 is a state vector that encodes the history of observed return values, {xτ}n−1τ=1 , and
inferred latent vectors, {zτ}n−1τ=1 , in the form of a high-dimensional representation:

ρτ = r([rx(xτ ); rz(zτ ); ρτ−1]) (10)

where r(·), rx(·), and rz(·) are DNs composed of rectified linear units.

•Hence, ReLaVaCH variational posterior over zn will be a function of both the current observation,
xn, as well as the recurrently-generated high-dimensional history representation, ρn−1, ∀n.

• To allow for inferring the true underlying posterior over the zn, we postulate the auxiliary latent
variables z′n ∈ RD, which we assume that yield an (accurate) Gaussian posterior of the form:

p(z′n|xn,hn−1;φ) = N (z′n|m̂n, diag(ŝ
2
n)) (11)

[m̂n; ŝ
2
n] = gφ([xn;ρn−1]) (12)

• Then, we assume that the original postulated latent variables, zn ∈ RD, can be obtained by trans-
forming the auxiliary ones, z′n, via a series of planar normalizing flows of the form:

fk(z) = z + ukh(w
T
k z + bk) (13)

This way, application of (5) yields the following posterior over the zn ∈ RD:

logp(zn|xn,hn−1;φ) =logp(z′n|xn,hn−1;φ)−
∑
k

log|1 + uTkψk(z
k
n)| (14)

where zkn , fk ◦ fk−1 · · · ◦ f1(z′n).
•We use Adagrad to train our model (i.e. maximize the ELBO (1)).

Experimental Evaluation
•We consider the daily closing prices of 25 NYSE equity indices, January 2008 to January 2011.

• Initially, we train on the first 100 data points, x1:100. We perform one-step-ahead prediction and
evaluate our model on the test-data log-likelihood pertaining to x100.

• Then, we add x100 to the training set, and rerun training/evaluation. We repeat, one step at a time.

• The employed inference DNs comprised 2 layers of 100 hidden units each. The dimensionality of
the latent variables zn was set toD = 50. The used normalizing flows comprisedK = 5 transforms.

Table 1: Average predictive log-likelihood of the evaluated methods (the higher the better).

Equity Index GARCH GJR GPMCH ReLaVaCH
A -1.328 -1.298 -1.280 -1.264

AA -1.215 -1.223 -1.213 -1.201
AAPL -1.222 -1.211 -1.211 -1.198
ABC -1.352 -1.340 -1.322 -1.311
ABT -1.283 -1.283 -1.283 -1.283
ACE -1.070 -1.074 -1.067 -1.060

ADBE -1.352 -1.393 -1.293 -1.282
ADI -1.357 -1.334 -1.331 -1.317

ADM -1.210 -1.210 -1.210 -1.206
ADP -1.235 -1.219 -1.215 -1.198

ADSK -1.028 -1.042 -1.020 -1.022
AEE -1.283 -1.269 -1.159 -1.140
AEP -1.138 -1.131 -1.130 -1.121
AES -1.215 -1.215 -1.199 -1.182
AET -1.268 -1.260 -1.243 -1.228
AFL -1.044 -1.046 -1.109 -1.024
AGN -1.257 -1.253 -1.256 -1.249
AIG -1.142 -1.173 -1.055 -1.005
AIV -1.021 -1.032 -1.003 -1.002
AIZ -1.304 -1.336 -1.264 -1.227

AKAM -1.343 -1.329 -1.342 -1.302
AKS -1.211 -1.240 -1.182 -1.158
ALL -1.250 -1.183 -1.182 -1.186

ALTR -1.070 -1.067 -1.056 -1.044
AMAT -1.223 -1.218 -1.235 -1.211


