Recurrent Latent Variable Conditional Heteroscedasticity

Sotirios P. Chatzis

Department of Electrical Engineering, Computer Engineering, and Informatics Cyprus University of Technology sotirios.chatzis@cut.ac.cy

Introduction

- Generalized autoregressive conditional heteroscedasticity (GARCH) models are one of the most successful families of approaches for volatility modeling in financial return signals.
- However, they employ quite rigid assumptions regarding the evolution of the variance.
- We address these issues by introducing a recurrent latent variable model, capable of capturing highly flexible functional relationships for the variances.
- We derive a fast, scalable, and robust to overfitting Bayesian inference algorithm.
- Our approach avoids the need to compute per-data point variational parameters, but can instead

Proposed Approach: The ReLaVaCH model

• On this basis, ReLaVaCH postulates a conditional independence assumption, where the conditioning variables z_n are some latent variables defined in a *D*-dimensional space with support in \mathbb{R} :

$$x_n | \boldsymbol{z}_n \overset{\text{i.i.d.}}{\sim} \mathcal{N}(0, \sigma_n^2)$$
 (6)

where

$$\sigma_n^2 = g_{\theta}(\boldsymbol{z}_n) \tag{7}$$

and $g_{\theta}(\cdot)$ is a deep neural network (DN) comprising *rectified* linear units, with parameters set θ . • We consider a latent variables prior that captures the temporal dynamics of volatility:

compute a set of global variational parameters valid for inference at both training and test time.

Motivation

- The changes in the log price of financial market indices (*returns*) may be non-linear, non-stationary and/or heavy-tailed, while their marginal distributions may be asymmetric, leptokurtic and/or show conditional heteroscedasticity.
- GARCH-type models make a specific assumption of what the functional dynamics of the volatility look like; in reality, this functional form is completely unknown.
- Hence, we need a new modeling paradigm that *infers this functional form* from the data.
- To this end, we leverage recent advances in the field of deep learning, namely *deep generative models* treated under the *amortized variational inference* (AVI) paradigm.

Deep Generative Models with Amortized Variational Inference

- Let us consider a dataset $X = {x_n}_{n=1}^N$ consisting of N samples of some observed random variable x; here, the modeled data constitute time-series signals of asset returns.
- We assume that the observed random variable is generated by some random process, involving an unobserved continuous random variable *z*.
- We introduce a conditional independence assumption for the observed variables x given the corresponding latent variables z; we adopt the conditional likelihood function $p(x|z; \theta)$.
- To perform Bayesian inference for the postulated model, we impose some prior distribution $p(z; \varphi)$.
- We yield the following evidence lower bound (ELBO) expression:

where

(9)

 $[\tilde{\boldsymbol{m}}_n; \tilde{\boldsymbol{s}}_n^2] = g_{\boldsymbol{\varphi}}(\boldsymbol{\rho}_{n-1})$

while $g_{\varphi}(\cdot)$ is a DN comprising *rectified* linear units, with parameters set φ .

• Here, ρ_{n-1} is a *state vector* that encodes the history of observed return values, $\{x_{\tau}\}_{\tau=1}^{n-1}$, and inferred latent vectors, $\{z_{\tau}\}_{\tau=1}^{n-1}$, in the form of a high-dimensional representation:

$$\boldsymbol{\rho}_{\tau} = r([r_x(x_{\tau}); \ r_z(\boldsymbol{z}_{\tau}); \ \boldsymbol{\rho}_{\tau-1}]) \tag{10}$$

where $r(\cdot)$, $r_x(\cdot)$, and $r_z(\cdot)$ are DNs composed of *rectified* linear units.

- Hence, ReLaVaCH variational posterior over z_n will be a function of both the current observation, x_n , as well as the recurrently-generated high-dimensional history representation, ρ_{n-1} , $\forall n$.
- To allow for inferring the true underlying posterior over the z_n , we postulate the *auxiliary latent* variables $z'_n \in \mathbb{R}^D$, which we assume that yield an (accurate) Gaussian posterior of the form:

$$p(\boldsymbol{z}_n'|\boldsymbol{x}_n, \boldsymbol{h}_{n-1}; \boldsymbol{\phi}) = \mathcal{N}(\boldsymbol{z}_n'|\hat{\boldsymbol{m}}_n, \operatorname{diag}(\hat{\boldsymbol{s}}_n^2))$$
(11)

$$[\hat{\boldsymbol{m}}_n; \hat{\boldsymbol{s}}_n^2] = g_{\boldsymbol{\phi}}([\boldsymbol{x}_n; \boldsymbol{\rho}_{n-1}])$$
(12)

• Then, we assume that the original postulated latent variables, $z_n \in \mathbb{R}^D$, can be obtained by transforming the auxiliary ones, z'_n , via a series of *planar normalizing flows* of the form:

$$f_k(\boldsymbol{z}) = \boldsymbol{z} + \boldsymbol{u}_k h(\boldsymbol{w}_k^T \boldsymbol{z} + b_k)$$
(13)

This way, application of (5) yields the following posterior over the $z_n \in \mathbb{R}^D$:

$$\log p(\boldsymbol{z}_n | \boldsymbol{x}_n, \boldsymbol{h}_{n-1}; \boldsymbol{\phi}) = \log p(\boldsymbol{z}_n' | \boldsymbol{x}_n, \boldsymbol{h}_{n-1}; \boldsymbol{\phi}) - \sum_k \log |1 + \boldsymbol{u}_k^T \psi_k(\boldsymbol{z}_n^k)|$$
(14)

$$\log p(X) \ge \mathcal{L}(\boldsymbol{\theta}, \boldsymbol{\varphi}, \boldsymbol{\phi} | X) = \sum_{i=1}^{N} \left\{ -\operatorname{KL} \left[q(\boldsymbol{z}_{i}; \boldsymbol{\phi}) || p(\boldsymbol{z}_{i}; \boldsymbol{\varphi}) \right] + \mathbb{E}_{q(\boldsymbol{z}_{i}; \boldsymbol{\phi})} [\log p(\boldsymbol{x}_{i} | \boldsymbol{z}_{i}; \boldsymbol{\theta})] \right\}$$
(1)

where $\operatorname{KL}[q||p]$ is the KL divergence, $q(\boldsymbol{z}; \boldsymbol{\phi})$ is the sought approximate (variational) posterior over the latent variable \boldsymbol{z} , while $\mathbb{E}_{q(\boldsymbol{z}; \boldsymbol{\phi})}[\cdot]$ is the (posterior) expectation of a function w.r.t. the random variable \boldsymbol{z} , the distribution of which is taken to be the posterior $q(\boldsymbol{z}; \boldsymbol{\phi})$.

- AVI assumes that the likelihood function and the resulting latent variable posterior, $q(z; \phi)$, are parameterized via deep neural networks (DNs).
- This is a non-conjugate construction; hence, $\mathbb{E}_{q(\boldsymbol{z}_i; \boldsymbol{\phi})}[\log p(\boldsymbol{x}_i | \boldsymbol{z}_i; \boldsymbol{\theta})]$ and its gradient are intractable.
- AVI resolves these issues by drawing random samples of $z \sim q(z; \phi)$, which are reparameterized via an appropriate differentiable transformation of an (auxiliary) random noise variable ϵ :

$$\mathcal{L}(\boldsymbol{\theta}, \boldsymbol{\varphi}, \boldsymbol{\phi} | X) = \sum_{i=1}^{N} \left\{ -\mathrm{KL} \left[q(\boldsymbol{z}_{i}; \boldsymbol{\phi}) || p(\boldsymbol{z}_{i}; \boldsymbol{\varphi}) \right] + \frac{1}{L} \sum_{l=1}^{L} \log p(\boldsymbol{x}_{i} | \boldsymbol{z}_{i}^{(l)}; \boldsymbol{\theta}) \right\}$$
(2)

• Specifically, considering a Gaussian posterior of the form

$$q(\boldsymbol{z}_i; \boldsymbol{\phi}) = \mathcal{N}(\boldsymbol{z}_i | \boldsymbol{\mu}_{\boldsymbol{\phi}}(\boldsymbol{x}_i), \text{diag } \boldsymbol{\sigma}_{\boldsymbol{\phi}}^2(\boldsymbol{x}_i))$$
(3)

we have:

$$\boldsymbol{z}_{i}^{(l)} = \boldsymbol{\mu}_{\boldsymbol{\phi}}(\boldsymbol{x}_{i}) + \boldsymbol{\sigma}_{\boldsymbol{\phi}}(\boldsymbol{x}_{i}) \cdot \boldsymbol{\epsilon}_{i}^{(l)}$$
(4)

In Eq. (4), $\epsilon_i^{(l)}$ is white random noise, $\epsilon_i^{(l)} \sim \mathcal{N}(\mathbf{0}, \mathbf{I})$, the $\mu_{\phi}(\mathbf{x}_i)$ and $\sigma_{\phi}^2(\mathbf{x}_i)$ are parameterized via deep neural networks, and diag $\boldsymbol{\chi}$ is a diagonal matrix with $\boldsymbol{\chi}$ on its main diagonal.

- Nevertheless, the employed *diagonal Gaussian assumption is quite limiting*.
- To allow for capturing the true model posterior, we adopt the principle of *normalizing flows*.
- We postulate the *auxiliary* latent variables z'_i , for which we consider that the Gaussian assumption

where $\boldsymbol{z}_n^k \triangleq f_k \circ f_{k-1} \cdots \circ f_1(\boldsymbol{z}_n')$.

• We use Adagrad to train our model (i.e. maximize the ELBO (1)).

Experimental Evaluation

- We consider the daily closing prices of 25 NYSE equity indices, January 2008 to January 2011.
- Initially, we train on the first 100 data points, $x_{1:100}$. We perform one-step-ahead prediction and evaluate our model on the test-data log-likelihood pertaining to x_{100} .
- Then, we add x_{100} to the training set, and rerun training/evaluation. We repeat, one step at a time.
- The employed inference DNs comprised 2 layers of 100 hidden units each. The dimensionality of the latent variables z_n was set to D = 50. The used normalizing flows comprised K = 5 transforms.

Table 1: Average predictive log-likelihood of the evaluated methods (the higher the better).

Equity Index	GARCH	GJR	GPMCH	ReLaVaCH
A	-1.328	-1.298	-1.280	-1.264
AA	-1.215	-1.223	-1.213	-1.201
AAPL	-1.222	-1.211	-1.211	-1.198
ABC	-1.352	-1.340	-1.322	-1.311
ABT	-1.283	-1.283	-1.283	-1.283
ACE	-1.070	-1.074	-1.067	-1.060
ADBE	-1.352	-1.393	-1.293	-1.282
ADI	-1.357	-1.334	-1.331	-1.317
ADM	-1.210	-1.210	-1.210	-1.206
ADP	-1.235	-1.219	-1.215	-1.198
ADSK	-1.028	-1.042	-1.020	-1.022
AEE	-1.283	-1.269	-1.159	-1.140
AEP	-1.138	-1.131	-1.130	-1.121
AES	-1.215	-1.215	-1.199	-1.182
3				

- regarding their posterior is accurate.
- We perform a series of *invertible* transforms, $\{f_k(\cdot)\}_{k=1}^K$, that converts the *auxiliary* latent variables z'_i to the original ones, z_i .
- This yields a a tractable, non-Gaussian posterior over them, $q(z_i)$, which reads

$$\log q(\boldsymbol{z}_i) = \log q(\boldsymbol{z}_i') - \sum_k \log \det |\nabla f_k|$$
(5)