
Contact 

 (X, Y ) : asymmetric p-order autoregressive stochastic volatility model (A-ARSV(p), [1]) : (L) hidden scalar, (Y ) observed: 

 

 

 

 

Y  is known as a log-return process, L is log-volatility. ψ, usually assumed negative, parameterizes the asymmetric volatility, 

according to which the returns and conditional volatility are negatively correlated. (Vn, Wn) are independent 𝓝(0,I2)-distributed. 

 

 Contribution: present an approach for estimating the order p of A-ARSV model from an observed sequence Y1..N , and related 

parameters θ = (φ1, …, φp, ψ, σ, μ). 

 

   

 

 Evidence from the BIC plots of ARSV(p) and A-ARSV(p) models for U.S. stock 

indices suggests that p=2 would be sufficient in most cases. It was frequent to 

observe BIC(A-ARSV(2))<BIC(ARSV(2))< BIC(ARSV(1))< BIC(A-ARSV(1)) – 

see e.g. Fig. 2. Considering a higher order of autoregression may allow to 

better highlight the asymmetric volatility phenomenon.  

 Our method can be generalized to take into account any non-linear/non-

Gaussian conditional distribution of Y  in the case where the hidden process is 

scalar autoregressive. The Gauss-Hermite quadrature rule is particularly 

efficient in the one-dimensional case, what makes our estimation procedure 

preferable to the simulation-based alternatives. 

 

 

 

   

 

 Consider an augmented state vector X and write A-ARSV(p) as a hidden Markov model Xn+1 = AXn + BUn+1, Y n = h(Xn),  

 

 

 

 

 

 Approximate the filtering pθ(xn|y1..n) and predictive pθ(xn+1|y1..n) distributions by normal densities. The parameters of these 

densities can be computed from θ and Y1..N in the Bayesian estimation framework by using a one-dimensional Gauss-

Hermite quadrature rule (see, e.g., [2]) recursively. Indeed, Y n  depends only on 2 components in Xn, thus  

 

 

can be approximated by using a one-dimensional Gauss-Hermite quadrature too. 

 Parameter estimate θ* is obtained by maximizing pθ(y1..N) w.r.t. θ by numerical optimization techniques. Finally, for each 

candidate order p, we compute θ*(p) and the Bayesian information criterion (BIC, [3]) defined as BIC(p) = -2log p(y1..N|θ*(p)) 

+ (p+3) logN in the case of the A-ARSV(p) model. The best-suited order p is chosen as that which minimizes BIC(p). 
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Results and discussion 

Context 

Fig. 1 Oriented dependency graph of A-ARSV(2). 
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