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Context
B (X Y):asymmetric p-order autoregressive stochastic volatility model (A-ARSV(p), [1]) : (L) hidden scalar, (¥) observed:
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2 2 Fig. 1 Oriented dependency graph of A-ARSV(2).

Y Is known as a log-return process, L Is log-volatility. , usually assumed negative, parameterizes the asymmetric volatility,
according to which the returns and conditional volatility are negatively correlated. (Vn, Wn) are independent N (0,I2)-distributed.

B Contribution: present an approach for estimating the order p of A-ARSY model from an observed sequence Yi.n, and related

parameters 6 = (@1, ..., @p, W, O, ).

Approach proposed
B Consider an augmented state vector X and write A-ARSV(p) as a hidden Markov model Xn+1 = AXn+ BUn+1, ¥n= h(Xn),
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B Approximate the filtering pe(xn|y1..n) and predictive pse(xn+1|y1..n) distributions by normal densities. The parameters of these
densities can be computed from 6 and Y1.n In the Bayesian estimation framework by using a one-dimensional Gauss-

Hermite quadrature rule (see, e.g., [2]) recursively. Indeed, ¥Y'n depends only on 2 components in Xn, thus
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can be approximated by using a one-dimensional Gauss-Hermite quadrature too.

B Parameter estimate 6% is obtained by maximizing pe(y1..N) w.r.t. 8 by numerical optimization techniques. Finally, for each
candidate order p, we compute 6*(p) and the Bayesian information criterion (BIC, [3]) defined as BIC(p) = -2log p(y1..N|6%(p))
+ (p+3) logN In the case of the A-ARSV(p) model. The best-suited order p is chosen as that which minimizes BIC(p).

Results and discussion

B Evidence from the BIC plots of ARSV(p) and A-ARSV(p) models for U.S. stock s
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Indices suggests that p=2 would be sufficient in most cases. It was frequent to PN

observe BIC(A-ARSV(2))<BIC(ARSV(2))< BIC(ARSV(1))< BIC(A-ARSV(1)) — 3948
see e.g. Fig. 2. Considering a higher order of autoregression may allow to ) 9
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better highlight the asymmetric volatility phenomenon. 2084|
B Our method can be generalized to take into account any non-linear/non- 3950
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Gaussian conditional distribution of ¥ In the case where the hidden process Is o
scalar autoregressive. The Gauss-Hermite quadrature rule Is particularly 3962 : - o -
efficient in the one-dimensional case, what makes our estimation procedure :
_ _ _ Fig. 2 BIC values of the ARSV(p), A-ARSV(p) models estimated
preferable to the simulation-based alternatives. from the EEM index (lower is better).
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