Introduction	Wavelet analysis	Branch & Bound Algorithm	Application to MAWI database	Conclusion

NON-LINEAR REGRESSION FOR BIVARIATE SELF-SIMILARITY IDENTIFICATION. APPLICATION TO ANOMALY DETECTION IN INTERNET TRAFFIC BASED ON A JOINT SCALING ANALYSIS OF PACKET AND BYTE COUNTS

<u>Jordan Frecon</u>¹, Romain Fontugne^{2,3}, Gustavo Didier⁴, Nelly Pustelnik¹, Kensuke Fukuda² and Patrice Abry^{1,2,3}

¹ CNRS, Physics Department, ENS Lyon, France, firstname.lastname@ens-lyon.fr ² The National Institute of Informatics, Tokyo, Japan, firstname@nii.ac.jp ³ Japanese French Laboratory for Informatics, Tokyo, Japan,

⁴ Mathematics Department, Tulane University, New Orleans, USA, gdidier@tulane.edu

ICASSP, Shanghai, 25th March 2016

Introduction	Wavelet analysis	Branch & Bound Algorithm	Application to MAWI database	Conclusion
•00				

Anomaly detection in Internet traffic

	HEADER (20 bytes)	PAYLOAD (variable size)
 IP packet: 	 source address 	– data

- destination address ...

Introduction	Wavelet analysis	Branch & Bound Algorithm	Application to MAWI database	Conclusion
•00				

Anomaly detection in Internet traffic

	HEADER (20 bytes)	PAYLOAD (variable size)
 IP packet: 	 source address 	– data
	 destination address 	

Introduction	Wavelet analysis	Branch & Bound Algorithm	Application to MAWI database	Conclusion
•00				

Anomaly detection in Internet traffic

	HEADER (20 bytes)	PAYLOAD (variable size)
 IP packet: 	 source address 	– data
	 destination address 	

Statistical modeling: self-similar process

Introduction	Wavelet analysis	Branch & Bound Algorithm	Application to MAWI database	Conclusion
000				

Statistical modeling of Internet traffic

• **Self-similarity:** time scales from *ms* (ethernet dynamic) to hours (human dynamic) [Abry et al, 2002]

• Univ. fractional Gaussian noise \rightarrow Hurst parameter $H \in [0, 1]$

quantify relation accross scales

Past work [Borgnat et al, 2009]

2 univariate analyses

Anomaly if $|H^{Byt} - H^{Pkt}| \gg 0$

Contribution

1 bivariate analysis

$$\begin{pmatrix} \mathbf{\gamma}^{\mathrm{Byt}} \\ \mathbf{\gamma}^{\mathrm{Pkt}} \end{pmatrix} = W \begin{pmatrix} X_1 \\ X_2 \end{pmatrix} \xleftarrow{} H_1 \\ \xleftarrow{} H_2$$

mixture of 2 correlated fGn

Anomaly if $|H_1 - H_2| \gg 0$

Introduction	Wavelet analysis	Branch & Bound Algorithm	Application to MAWI database	Conclusion
000				

Operator Fractional Gaussian Noise

• 2 correlated fGn $(X_1, X_2)^{\top}$:

$$\begin{split} \Sigma_{X_{\rho},X_{\rho'}}(s) &= \frac{\sigma_{x_{p}}\sigma_{x_{p'}}\rho_{x_{p},x_{p'}}}{2} \left(|s-1|^{H_{\rho}+H_{\rho'}}-2|s|^{H_{\rho}+H_{\rho'}}+|s+1|^{H_{\rho}+H_{\rho'}}\right) \\ \Sigma_{X}(0) &= \begin{pmatrix} \sigma_{x_{1}}^{2} & \sigma_{x_{1}}\sigma_{x_{2}}\rho_{x} \\ \sigma_{x_{1}}\sigma_{x_{2}}\rho_{x} & \sigma_{x_{2}}^{2} \end{pmatrix} \end{split}$$

• Condition of existence:

$$\begin{split} g(H_1,H_2,\rho_x) &\equiv \Gamma(2H_1+1)\Gamma(2H_2+1)\sin(\pi H_1)\sin(\pi H_2) \\ &\quad -\rho_x^2\Gamma(H_1+H_2+1)^2\sin^2(\pi(H_1+H_2)/2) > 0. \end{split}$$

• Mixing:
$$\begin{pmatrix} \mathbf{Y}^{\text{Byt}} \\ \mathbf{Y}^{\text{Pkt}} \end{pmatrix} = \begin{pmatrix} \frac{1}{\sqrt{1+\gamma^2}} & \frac{\beta}{\sqrt{1+\beta^2}} \\ \frac{-\gamma}{\sqrt{1+\gamma^2}} & \frac{1}{\sqrt{1+\beta^2}} \end{pmatrix} \begin{pmatrix} X_1 \\ X_2 \end{pmatrix}$$

Objective: estimate
$$\Theta = (H_1, H_2, \rho_x, \sigma_{x_1}, \sigma_{x_2}, \beta, \gamma)$$

Introduction 000	Wavelet analysis ●O	Branch & Bound Algorithm	Application to MAWI database	Conclusion O

Wavelet spectrum

• Wavelet coefficients: $D_{y_p}(j,k) = \int_{\mathbb{R}} \psi_{j,k}(t) Y_p(t) dt$

where
$$\psi_{j,k}(t) = 2^{-j(1/2-\mu)}$$
 $\underbrace{\psi_0(2^{-j/2}t-k)}_{}$

dilation and translation of ψ_0

and Fractional integration parameter μ (default: $\mu = 0$)

• Wavelet spectrum: $(E_{\rho,\rho'}(\Theta))_j = \mathbb{E} D_{y_{\rho}}(j,k) D_{y_{\rho'}}(j,k)^*$ $= + \alpha_{\rho,\rho'}^{(1,1)}(\beta,\gamma) \sigma_{x_1}^2 \eta_{j,H_1} 2^{j(2H_1+1+2\mu)}$ $+ \alpha_{\rho,\rho'}^{(1,2)}(\beta,\gamma) \rho_x \sigma_{x_1} \sigma_{x_2} \eta_{j,\frac{H_1+H_2}{2}} 2^{j(H_1+H_2+1+2\mu)}$ $+ \alpha_{\rho,\rho'}^{(2,2)}(\beta,\gamma) \sigma_{x_2}^2 \eta_{j,H_2} 2^{j(2H_2+1+2\mu)}$ $\rightarrow \text{ Empirical estimate: } (S_{\rho,\rho'})_j = \frac{2^j}{N} \sum_{k=1}^{N/2^j} D_{y_{\rho}}(j,k) D_{y_{\rho'}}(j,k)^*$

Estimate Θ such as $(E_{p,p'}(\Theta))_j$ fits $(S_{p,p'})_j$ jointly for all j

Introduction	Wavelet analysis	Branch & Bound Algorithm	Application to MAWI database	Conclusion
	00			

Non-linear Wavelet Regression Problem

Non-convex optimization problem \longrightarrow Branch & Bound algorithm [Hansen, 1980]

Introduction	Wavelet analysis	Branch & Bound Algorithm	Application to MAWI database	Conclusion
		00000		

Branch & Bound Algorithm

 $\widehat{\Theta} = \arg\min_{\Theta \in \mathcal{Q}_0} \textit{C}(\Theta) \quad , \text{ non-convex criterion C and search space } \mathcal{Q}_0$

relaxation of \mathcal{Q}_0

• Bounding over the convex relaxation of \mathcal{R}_1 & \mathcal{R}_2

- Split \mathcal{R}_2 into \mathcal{R}_{21} & \mathcal{R}_{22} • Bounding over the convex relaxation of \mathcal{R}_{21} & \mathcal{R}_{22}
- Discard \mathcal{R}_1

ntroduction	Wavelet analysis	Branch & Bound Algorithm	Application to MAWI database	Conclusion
		0000		

Branch & Bound Algorithm - Initalization

$$\begin{aligned} \mathcal{Q}_0 = \Big\{ \Theta = (H_1, H_2, \rho_x, \sigma_{x_1}, \sigma_{x_2}, \beta, \gamma) \in \mathbb{R}^7 \, | \, \Theta \in [0, 1]^3 \times \\ & [0, \sigma_{max}]^2 \times [-1, 1]^2, \underbrace{g(H_1, H_2, \rho_x) > 0}_{\text{non convex}}, H_1 \leq H_2 \Big\}. \end{aligned}$$

 $\begin{array}{l} g(h_1,h_2,\rho_x) > 0 \Longleftrightarrow (X_1,X_2) \text{ correctly defined} \\ g(h_1,h_2,\rho_x) > 0 \text{ must not be relaxed } ! \end{array}$

Proposed solution:

Introduction	Wavelet analysis	Branch & Bound Algorithm	Application to MAWI database	Conclusion
		00000		

Introduction	Wavelet analysis	Branch & Bound Algorithm	Application to MAWI database	Conclusion
		00000		

Introduction	Wavelet analysis	Branch & Bound Algorithm	Application to MAWI database	Conclusion
		00000		

Introduction	Wavelet analysis	Branch & Bound Algorithm	Application to MAWI database	Conclusion
		00000		

Introduction	Wavelet analysis	Branch & Bound Algorithm	Application to MAWI database	Conclusion
		00000		

Introduction	Wavelet analysis	Branch & Bound Algorithm	Application to MAWI database	Conclusion
		00000		

Introduction	Wavelet analysis	Branch & Bound Algorithm	Application to MAWI database	Conclusion
		00000		

Introduction	Wavelet analysis	Branch & Bound Algorithm	Application to MAWI database	Conclusion
		00000		

Introduction	Wavelet analysis	Branch & Bound Algorithm	Application to MAWI database	Conclusion
		00000		

Branch & Bound Algorithm - Termination

• Evolution of the search space:

- Termination: size of all regions < size limit
- Solution: $\widehat{\Theta} = \operatorname{mid}$ (region with lowest upper bound)

Introduction	Wavelet analysis	Branch & Bound Algorithm	Application to MAWI database	Conclusion
		00000		

Estimation Performance on Synthetic Data

Mixture

Figure: Four configurations potentially matching Internet Traffic data (only N = 3600 samples long).

Introduction	Wavelet analysis	Branch & Bound Algorithm	Application to MAWI database ●0000	Conclusion O
MAWI Da	atabase			

• MAWI repository:

WIDE backbone network

 $(Japan \longleftrightarrow \mathsf{USA})$

- Daily collection of internet traces from 14:00 to 14:15 (JST)
- Each trace \sim 100 to 150 million IP packets
- Packet 5-tuple and timestamps anonymized and publicly available
- Anomaly detection: aggregated Pkt and Byt counts
 - How to construct a self-reference for normal traffic ?
 - How to adjust to specificities of real-world data ?

Introduction	Wavelet analysis	Branch & Bound Algorithm	Application to MAWI database	Conclusion
			00000	

Reference for normal traffic

 \bullet Random projections: same source address \rightarrow same sketch

Packets

Introduction	Wavelet analysis	Branch & Bound Algorithm	Application to MAWI database	Conclusion
			00000	

Reference for normal traffic

 \bullet Random projections: same source address \rightarrow same sketch

Packets

Jordan Frecon

Introduction	Wavelet analysis	Branch & Bound Algorithm	Application to MAWI database	Conclusion
			0000	

Role of fractional integration parameter μ

Biv.fGn requires H_1 , $H_2 \in [0, 1]$

• Wavelet coefficients: $D_{y_p}(j,k) = \int_{\mathbb{R}} \psi_{j,k}(t) Y_p(t) dt$

where
$$\psi_{j,k}(t) = 2^{-j(1/2-\mu_W)} \underbrace{\psi_0(2^{-j/2}t-k)}_{\text{dilation and translation of }\psi_0}$$

• Wavelet spectrum: $\mathbb{E}D_{y_{\rho}}(j,k)D_{y_{\rho'}}(j,k)^*$

$$\begin{split} (\mathcal{E}_{\rho,\rho'}(\Theta))_{j} = &+ \alpha_{\rho,\rho'}^{(1,1)}(\beta,\gamma) \, \sigma_{x_{1}}^{2} \eta_{j,\mathcal{H}_{1}} 2^{j(2\mathcal{H}_{1}+1+2\mu_{B})} \\ &+ \alpha_{\rho,\rho'}^{(1,2)}(\beta,\gamma) \, \rho_{x} \sigma_{x_{1}} \sigma_{x_{2}} \eta_{j,\frac{\mathcal{H}_{1}+\mathcal{H}_{2}}{2}} 2^{j(\mathcal{H}_{1}+\mathcal{H}_{2}+1+2\mu_{B})} \\ &+ \alpha_{\rho,\rho'}^{(2,2)}(\beta,\gamma) \, \sigma_{x_{2}}^{2} \eta_{j,\mathcal{H}_{2}} 2^{j(2\mathcal{H}_{2}+1+2\mu_{B})} \end{split}$$

 H_1 and H_2 shifted by $\mu_B - \mu_W$ into [0,1]

Introduction	Wavelet analysis	Branch & Bound Algorithm	Application to MAWI database	Conclusion
			00000	

Application to MAWI database

2008 data

2009 data

(100% Trinocular anomalies detected)

Introduction	Wavelet analysis	Branch & Bound Algorithm	Application to MAWI database	Conclusion
			00000	

Application to MAWI database

2014 data

2015 data

Introduction	Wavelet analysis	Branch & Bound Algorithm	Application to MAWI database	Conclusion •
0				

Conclusion

Joint scaling analysis of Packets and Bytes counts

- ightarrow Biv.OfGn
- \rightarrow Non-linear wavelet regression problem

Branch & Bound algorithm

 \rightarrow Toolbox available soon (http://perso.ens-lyon.fr/jordan.frecon/)

Fractional integration parameter

ightarrow permits to adjust to real world data

Application to MAWI database

ightarrow systematic detection of some anomalies