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1. Introduction

• In many problems the unknowns reside on spherical mani-
folds.
•We employ Fisher-Bingham (F-B) prior distributions to the

unknowns.
• The F-B priors form a conjugate model that yields closed-

form, recursive estimates, naturally constrained to the
spherical manifold.
•We apply this model to a communication setup with multiple

gain-controlled FIR channels, deriving a MAP channel es-
timator and a blind equalizer based on Rao-Blackwellized
particle filters.

2. Problem Formulation

• Single transmitter, R receivers.
• Let {bn} be the bits and {xn} the corresponding differentially

encoded symbols.
• Signal observed at the r−th receiver:

yr,n = hTr xn + vr,n, (1)

where xt , [xt . . . xt−L+1]T , vr,t ∼ N (0;σ2
r), and hr ∈ RL×1

is the (time-invariant) impulse response of the channel to
the r−th receiver.
• The random quantities hr, {xn}, and {vr,n}, r ∈ {1, ..., R},

are presumed to be mutually independent a priori.
•Due to automatic gain control (AGC), ‖hr‖ = 1; to take

this constraint into account, we assume that hr has an
L−variate F-B prior

p(hr) =FB(hr|ar,0,Br,0) , C(ar,0,Br,0)−1×
exp(hTr Br,0hr + hTr ar,0)I‖hr‖2=1, (2)

where ar,0 ∈ RL and Br,0 ∈ RL×L are the hyper-
parameters, and C(ar,0,Br,0) is the normalization constant.
• Accurate numerical estimates to C(ar,0,Br,0) can be com-

puted via the so-called saddlepoint approximations [1] (see
Appendix).

3. Main Result

• As a consequence of (1) and (2), the posterior distribution
of hr given Xn , {x1, · · · ,xn} and Yr,n , {yr,1, · · · , yr,n} is
F-B, i.e.,

p(hr|Xn, Yr,n) = FB(hr|ar,n,Br,n), (3)

where the parameters ar,n and Br,n can be recursively de-
termined via

Br,n = Br,n−1 − xnx
T
n/2σ2

r, (4)
ar,n = ar,n−1 + xnyr,n/σ

2
r. (5)

• Sketch of the Proof:

– Exploiting Markovian properties, it follows that:

p(hr|Xn, Yr,n) =

=
p(yr,n|xn,hr)p(hr|Xn−1, Yr,n−1)∫

hr∈SL−1 p(yr,n|xn,hr)p(hr|Xn−1, Yr,n−1) dSL−1(hr)

– Induction hypothesis:

p(hr|Xn−1, Yr,n−1) = FB(hr|ar,n−1,Br,n−1).

– Observing that p(yr,n|xn,hr) = N (yr,n|hTr xn;σ2
r), we get

after some algebra that

p(yr,n|xn,hr)p(hr|Xn−1, Yr,n−1) =
1√

2πσ2
r

×

C(ar,n,Br,n)

C(ar,n−1,Br,n−1)
exp

(
−
y2
r,n

2σ2
r

)
FB(hr|ar,n,Br,n). (6)

4. Channel Identification

• The local trained MAP estimate of the channel parameters
at the r − th receiver is given by

ĥr,n , arg max
hr

p(hr|Xn, Yr,n). (7)

• The constrained optimization problem (7) can be recast as

ĥr,n = arg max
hr

exp(hTr Br,nhr + hTr ar,n),

subject to ‖hr‖2 = 1

as the normalization constant C(ar,n,Br,n) does not depend
on hr.
• The corresponding Lagrange function is given by

Λ(hr, λ) , exp(hTr Br,nhr + hTr ar,n) + λ(hTr hr − 1). (8)

• Taking the gradient of (8) with respect to hr, dividing the re-
sult by the exponential term and equating it to zero, it follows
that

ĥr,n = −1

2

(
Br,n + λ̃I

)−1
ar,n. (9)

where λ̃ , λ exp(−ĥTr,nBr,nĥr,n − ĥTr,nar,n).
• As Br,n is symmetrical, we can plug its eigenvalue decom-

position Br,n , Ur,nDr,nU
T
r,n into (9) and rewrite the con-

straint ‖ĥr,n‖22 = 1 as

aTr,nUr,n

(
Dr,n + λ̃I

)−2
UT
r,nar,n = 4. (10)

• Equation (10) is equivalent to

L∑
k=1


[
aTr,nUr,n

][k]

[
Dr,n

][k]
+ λ̃


2

= 4 (11)

which can be rewritten as a 2L degree polynomial equation
and numerically solved for λ̃.

•We verified experimentally that the most negative real λ̃ that
solves (11) almost always leads to the MAP solution when
replaced in (9).

5. Multichannel Blind Equalization

•We wish now to obtain the joint MAP estimate

b̂n = arg max
bn
p(bn|Yn),

that employs the observations available at all receivers,
Yn , {Y1,n, · · · , Yr,n}, via a particle filtering method

p(Xn|Yn) ≈
P∑
p=1

w
(p)
n I{Xn−X(p)

n }
,

where P denotes the number of particles X
(p)
n and w(p)

n the
normalized weights.
• Adopting the prior importance function, the particles are ex-

tended as x
(p)
n ∼ p(xn|x

(p)
n−1) and the weights updated as

w
(p)
n ∝ w

(p)
n−1 p(yn|X

(p)
n , Yn−1).

• The a priori independence of the channel parameters and
noise samples at each receiver imply that

p(yn|X
(p)
n , Yn−1) =

R∏
r=1

p(yr,n|X
(p)
n , Yr,n−1).

• Likewise, conditional independence relations induced by
the model result that

p(yr,n|X
(p)
n , Yr,n−1) =

∫
hr∈SL−1

p(yr,n|x
(p)
n ,hr)×

p(hr|X
(p)
n−1, Yr,n−1) dSL−1(hr). (12)

• The integrand in (12) is identical to (6), which depends on
hr only through a F-B density. Therefore

p(yr,n|X
(p)
n , Yr,n−1) =

1√
2πσ2

r

·
C(a

(p)
r,n,B

(p)
r,n)

C(a
(p)
r,n−1,B

(p)
r,n−1)

exp

(
−y2

r,n

2σ2
r

)
,

(13)

where a
(p)
r,n and B

(p)
r,n are defined as in (4)-(5) replacing xn

with x
(p)
n .

6. Simulation Results

• To evaluate the performance of the proposed algorithms,
we ran numerical experiments with L = 3. We drew hr by
sampling independently in each realization from a uniform
distribution on the unit sphere. Accordingly, the hyperpa-
rameters ar,0 and Br,0 were set to zero.
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Figure 1: Average m.s.e. in the identification of the parameter
hr as a function of the number of observed samples (K) and
the SNR.

• As one may verify (Figure 1), the algorithm employing F-B
prior led to a lower m.s.e. (about 66% of the LS estimator
m.s.e.) for all SNR levels; this remains true whenK = 1, 000.
• To assess the mean BER of the proposed blind equalization

algorithm, the SNR was set equal on all receivers.
• In each realization, an i.i.d. sequence of 250 differentially

encoded binary symbols was transmitted, being the first 150
bits discarded. The simulated system has R = 4. hr was
sampled independently for each r. The particle filter uses
P = 300 and performs systematic resampling at each time
step.
• Figure 2 displays the mean BER of the proposed algorithm

(F-B) and that of the equivalent method that employs mis-
matched Gaussian priors [2, Sec. 3.1].
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Figure 2: Mean BER estimated in 5,000 Monte Carlo runs as
a function of the SNR. The dashed lines surrounding the solid
ones display 95% confidence intervals.

• As one may note, the mean BER of the new (F-B) algorithm
is equivalent to the optimal MAP equalizer and Gaussian
particle filter method for low SNR. For high SNR, the new
method outperforms the others.

7. Conclusions

•We introduced new algorithms for channel identification and
blind equalization using a Fisher-Bingham prior model for
the unknown parameters.

• F-B priors lead to a conjugate model that results in closed-
form expressions for the parameters of the posterior densi-
ties, dropping with the need for approximations performed
by previous works that employed sphere-constrained distri-
butions.

• As we assessed via Monte Carlo simulations, the new
channel identification and blind equalization algorithms out-
performed conventional algorithms that adopt mismatched
Gaussian priors, at the cost of increased computational
complexity.
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Appendix: Saddlepoint Approximation

• Kume [1] developed a method to compute the normalization
constant

C(a,B) =

∫
h∈SL−1

exp(hTBh + hTa) dSL−1(h)

that exploits the fact that the F-B density arises when an L−
variable Gaussian r.v. x is conditioned to have unit norm.

• Assuming (without loss of generality) that B is diagonal
and introducing the change of variables ν , xTx and
h , x/ν1/2, it follows that C(a,B) depends on p(ν) (i.e.,
the p.d.f. of ν), evaluated at ν = 1.

• As ν can be shown to be a linear combination of noncen-
tral χ2

1 r.v.’s, there is a closed-form expression for K(t), the
cumulant generating function of the distribution of ν, from
which one can derive the saddlepoint approximation

p̂(ν) ,
(
2πK ′′(t̂)

)−1
2 exp

(
K(t̂)− t̂ν

)
,

where t̂ denotes the solution to K ′(t̂) = ν, and K ′(t) and
K ′′(t) are the 1st and 2nd derivatives of K(t), respectively.
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