‘ 1. Introduction |

¢ In many problems the unknowns reside on spherical mani-
folds.

e We employ Fisher-Bingham (F-B) prior distributions to the
unknowns.

e The F-B priors form a conjugate model that yields closed-
form, recursive estimates, naturally constrained to the
spherical manifold.

e We apply this model to a communication setup with multiple
gain-controlled FIR channels, deriving a MAP channel es-
timator and a blind equalizer based on Rao-Blackwellized
particle filters.

‘ 2. Problem Formulation |

e Single transmitter, R receivers.

e Let {b,} be the bits and {x,,} the corresponding differentially
encoded symbols.

e Signal observed at the r—th receiver:

Yr.n = hgxn + Ur.n, (1)

where Xt = [ZCt R xt—L-l—l]T! Urt ~~ N(07 O'%), and h?“ & RLXl
Is the (time-invariant) impulse response of the channel to
the r—th receiver.

e The random quantities h,, {x,}, and {v.,}, r € {1,..., R},
are presumed to be mutually independent a priori.

e Due to automatic gain control (AGC), ||h.|| = 1; to take
this constraint into account, we assume that h, has an
L—variate F-B prior

p(hT) :'FB<hT‘a7“,07 BT,O) é C<a?”,07 BT,O>_1 X
eXp(thr,Qhr + h?aﬁo)z"hr‘b:l, (2)

where a,y € R! and B,; € RI*XL are the hyper-
parameters, and C(a,. o, B, ) is the normalization constant.

e Accurate numerical estimates to C(a,, B,) can be com-
puted via the so-called saddlepoint approximations [1] (see
Appendix).

‘ 3. Main Result |

e As a consequence of (1) and (2), the posterior distribution
of h, given X, = {X17 e aXn} and Yr,n = {y?“,la e ayr,n} is
F-B, i.e.,

p(hr‘Xna YT,TL) = F8<hr|ar,na BT,TL>7 (3)

where the parameters a,;, and B,-;, can be recursively de-
termined via

Br,n — Bnn—l — ang/%ga (4)

arn = arp—1 T Xnyr,n/gg- (5)

ICASSP 2016, Shanghai - China.

Sequential Bayesian Algorithms for Identification and

Blind Equalization of Unit-Norm Channels

Claudio J. Bordin Jr.! and Marcelo G. S. Bruno?

'UFABC, claudio.bordinQRufabc.edu.br

e Sketch of the Proof:

— Exploiting Markovian properties, it follows that:

p(hT’Xna Yr,n> =
_ P(Yrn|xn, he)p(hy | X1, Yy 1)
fhreSL—l P(Yrn|xn, hy)p(hy | X1, Y 1) dSt—1(h,)

— Induction hypothesis:
p(hy| X1, Yr,n—l) = ]:B(hr‘ar,n—la Br,n—l)-

— Observing that p(yrn|xn, hy) = N (yr,n\hfxn; a%), we get

after some algebra that

1
p(yﬁnlxnv h7“>p(h7“‘Xn—1a Yr,n—1> — \/7><

2#072
C(a’r T B”l“ n) y%n
) ) g FB h )B . 6
Clarn—1,Brn-1) TP 7202 (hrlarn, Br.n). (6)

r

‘ 4. Channel Identification |

e The local trained MAP estimate of the channel parameters
at the » — th receiver is given by

aS

h,, = arg rrlllaxp(hr!Xn, Yrn). (7)

e The constrained optimization problem (7) can be recast as

h,, =arg Hhax exp(hy Brphy + by ay ),

subject to ||h,|[o =1

as the normalization constant C(a;,, B, ;) does not depend
on h,.

e The corresponding Lagrange function is given by
A(hy, \) £ exp(h! B, by + hla,,) + A(hlh, —1).  (8)

e Taking the gradient of (8) with respect to h,, dividing the re-
sult by the exponential term and equating it to zero, it follows
that

. 1 N

h?“,n — 5 (Br,n + AI) Ar n. (9)
Where 5\ é )\eXp<_f].7T7nBT’n]?lT’n - ].i\lgjna/)"’n).

e As B, is symmetrical, we can plug its eigenvalue decom-
position B;,, £ U, ;,D,.,,U.,, into (9) and rewrite the con-

straint ||h,,||3 = 1 as

T 1) 2T
al U, (Dm + )\I) U” a,, =4 (10)

e Equation (10) is equivalent to

([0,

>

; - | =4 (11)
L—1 \_Dr,n} %] —|—>\)

which can be rewritten as a 2L degree polynomial equation
and numerically solved for .

e We verified experimentally that the most negative real \ that
solves (11) almost always leads to the MAP solution when
replaced in (9).

‘ 5. Multichannel Blind Equalization |

e We wish now to obtain the joint MAP estimate

lA?n = arg mbaxp(bn]Yn),

that employs the observations available at all receivers,
Y, = {Y1n, .Y}, via a particle filtering method

P
Pl S ul Ty
Ji=

where P denotes the number of particles X" and w'?”) the
normalized weights.

e Adopting the prior importance function, the particles are ex-
tended as x.”) ~ p(xnlxgpll) and the weights updated as

w’l(lp> X wépll p(yn’X’Szma Y1)

e The a priori independence of the channel parameters and
noise samples at each receiver imply that

Xv(zp) 7 Yr,n—l) .

R
plyn X Yo-1) = T plr
r=1

e Likewise, conditional independence relations induced by
the model result that

(p)

p(yfr,n!Xq(»Lp >7Y7“,n—1) = / P(Yrnlxn, hy)x
h,eSL-1
p(he[XP) Y1) dSE (y). (12)

e The integrand in (12) is identical to (6), which depends on
h, only through a F-B density. Therefore

p(yr,n‘ngp)a Yr,n—l) —

A /27‘(‘0‘% | C(a<p> B(p)

rm—1"—"rn—1

where aﬁﬁl and Bgff% are defined as in (4)-(5) replacing x,,
(p)

with x,, .

‘ 6. Simulation Results |

e T0 evaluate the performance of the proposed algorithms,
we ran numerical experiments with . = 3. We drew h, by
sampling independently in each realization from a uniform
distribution on the unit sphere. Accordingly, the hyperpa-
rameters a,.; and B, were set to zero.

I Cah.Bh) (y2n>
exp 7
)

“Instituto Tecnoldgico de Aeronautica, bruno@ita.br

C o ! T T T
10‘2 NJ., ““““““““ ““““““ + LS (K=100)
N | O F-B (K=100)
R Nkl * LS (K=1000)
- N OON Vv F-B (K=1000)
o e N z |
L0 S Q f f
% 10_4 ““““““““““ So \\ ““““ ““““““““ ““““
=) J\ NG :
O S :
D ANEY NG f
c . N Y ;
3 E oL
s e L N
C N, N
10‘6 44444444444444444444444444444444444444444444444444 \\ 444444 gm\\_
J Q)
: : : J o
0 5 10 15 20
SNR (dB)

Figure 1: Average m.s.e. in the identification of the parameter
h, as a function of the number of observed samples (K ) and

the SNR.

e As one may verify (Figure 1), the algorithm employing F-B
prior led to a lower m.s.e. (about 66% of the LS estimator
m.s.e.) for all SNR levels; this remains true when K = 1, 000.

e 10 assess the mean BER of the proposed blind equalization
algorithm, the SNR was set equal on all receivers.

e In each realization, an i.i.d. sequence of 250 differentially
encoded binary symbols was transmitted, being the first 150
bits discarded. The simulated system has R = 4. h, was
sampled independently for each r. The particle filter uses
P = 300 and performs systematic resampling at each time
step.

e Figure 2 displays the mean BER of the proposed algorithm
(F-B) and that of the equivalent method that employs mis-
matched Gaussian priors [2, Sec. 3.1].
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Figure 2: Mean BER estimated in 5,000 Monte Carlo runs as
a function of the SNR. The dashed lines surrounding the solid

ones display 95% confidence intervals.

e As one may note, the mean BER of the new (F-B) algorithm
is equivalent to the optimal MAP equalizer and Gaussian
particle filter method for low SNR. For high SNR, the new
method outperforms the others.
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‘ 7. Conclusions |

e We introduced new algorithms for channel identification and
blind equalization using a Fisher-Bingham prior model for
the unknown parameters.

e F-B priors lead to a conjugate model that results in closed-
form expressions for the parameters of the posterior densi-
ties, dropping with the need for approximations performed
by previous works that employed sphere-constrained distri-
butions.

e As we assessed via Monte Carlo simulations, the new
channel identification and blind equalization algorithms out-
performed conventional algorithms that adopt mismatched
Gaussian priors, at the cost of increased computational
complexity.
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‘ Appendix: Saddlepoint Approximation |

e Kume [1] developed a method to compute the normalization
constant

C(a,B) = / exp(h! Bh + h'a) dS*~!(h)
heSi—1

that exploits the fact that the F-B density arises when an L—
variable Gaussian r.v. x is conditioned to have unit norm.

e Assuming (without loss of generality) that B is diagonal
and introducing the change of variables v 2 x!x and
h £ x/uv!/2, it follows that C(a, B) depends on p(v) (i.e.,
the p.d.f. of v), evaluated at v = 1.

e As v can be shown to be a linear combination of noncen-
tral x4 r.v’s, there is a closed-form expression for K(t), the
cumulant generating function of the distribution of v, from
which one can derive the saddlepoint approximation

1

p(v) = 2rK" (1)) 2exp (K(I) — tv),

where ¢ denotes the solution to K'(t) = v, and K'(t) and
K" (t) are the 1°¢ and 2"? derivatives of K (t), respectively.



