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Introduction

> Distributed estimation

* Distributed adaptive algorithms are of great attention for

estimating parameters of interest in wireless sensor networks.

* Such techniques is to perform the parameter estimation from data
collected from nodes (or agents) in-network.

* The basic 1dea 1s that each node performs adaptive estimation in
cooperation with its neighboring nodes.

[R1] A.H. Sayed, “Adaptation, learning, and optimization over networks,” Foundations and Trends in Machine Learning,
vol. 7, no. 4-5, pp. 311-801, 2014.

* Distributed adaptive algorithms have been applied to
many problems, e.g., frequency estimation in power grid, and

spectrum estimation.

[R2] S. Kanna, D.H. Dini, Y. Xia, S.. Hui, and D.P. Mandic, “Distributed widely linear kalman filtering for frequency
estimation in power networks,” IEEE Transactions on Signal and Information Processing over Networks, vol. 1, no. 1, pp.
45-57, 2015.

[R3] T.G. Miller, S. Xu, R.C. de Lamare, and H.V. Poor, “Distributed spectrum estimation based on alternating mixed
discrete-continuous adaptation,” IEEE Signal Processing Letters, vol. 23, no. 4, pp. 551-555, 2016.



Introduction
» Distributed algorithms

 According to the cooperation way of interconnected nodes,
existing algorithms can be categorized as the incremental,
consensus, and diffusion types.

* The diffusion protocol 1s the most popular, because it does not
require a Hamiltonian cycle path as does the incremental type; it 1s
stable and has a better estimation performance than the consensus

type.

[R4] SY. Tu and A.H. Sayed, “Diffusion strategies outperform consensus strategies for distributed estimation over
adaptive networks,” IEEE Transactions on Signal Processing, vol. 60, no. 12, pp. 6217-6234, 2012.

* Several diffusion-based distributed algorithms have been proposed,
e.g., the diffusion least mean square (ALMYS) algorithm, diffusion
recursive least squares (ARLS) algorithm, and their modifications.



Introduction

» Existing robust ways against impulsive noises

In practice, measurements at the network nodes can be corrupted
by i1mpulsive noise. Impulsive noise has the property that its
occurence probability is small and magnitude 1s typically much
higher than the nominal measurement.

[R5] K.L. Blackard, T.S. Rappaport, and C.W. Bostian, “Measurements and models of radio frequency impulsive noise for
indoor wireless communications,” IEEE Journal on selected areas in communications, vol. 11, no. 7, pp. 991-1001, 1993.

Impulsive noise deteriorates significantly the performance of
many algorithms in the single-agent case.

In addition, for distributed algorithms in the multi-agent case, the
adverse effect of impulsive noise at one node can also propagate
over the entire network due to the exchange of information among
nodes.



Introduction

Aiming to impulsive noise scenarios, many robust distributed
algorithms have been proposed.

Some algorithms, e.g., the diffusion sign error LMS (dSE-LMS),
are based on using the instantaneous gradient-descent method to
minimize an individual robust criterion.

[R6] J. Ni, J. Chen, and X. Chen, “Diffusion sign-error LMS algorithm: Formulation and stochastic behavior analysis,” Signal
Processing, vol. 128, pp. 142-149, 2016.

A robust  variable weighting coefficients dLMS
(RVWC-dLMS) algorithm was developed, which only considers
the data and intermediate estimates from nodes not affected by
impulsive.

[R7] D.C. Ahn, J.W. Lee, S.J. Shin, and W.J. Song, “A new robust variable weighting coefficients diffusion LMS algorithm,”
Signal Processing, vol. 131, pp. 300-306, 2017.

However, these robust algorithms have slow
convergence, especially for colored input signals at nodes.



Introduction

> Our contributions

We present a robust dRLS (R-dRLS) algorithm, which 1s robust
against impulsive noise and provides good decorrelating property

for colored 1nput signals.

The R-dRLS algorithm minimizes a local exponentially weighted
least squares (LS) cost function subject to a time-dependent
constraint on the squared norm of the intermediate estimate at

each node.

In order to equip the R-dRLS algorithm with the ability to
withstand sudden changes in the environment, we also propose a

diffusion-based distributed nonstationary control (DNC) method.



Problem Formulation

* Consider a network that has N nodes
distributed over some region in space.

where,

k - node 1ndex, Diffusion network

[ - time 1nstant,

N - neighborhood of node £, 1.e., a set of all nodes connected
to node £ including itself,

ny - cardinality of N/}



Problem Formulation

* Atevery time instantz > 0, node k has an input vector uy ;
with M-dimension and a desired outputdi(z), related as:

di. (i) = uj ;w° + vy () (1)

where,
vk(2) - additive noise,

0

w’ - parameter vector of size M/ x 1

* The task is to estimate w° using the available data
collected at nodes, 1.e., {uy;,dx (i)}, -



Problem Formulation

* For this purpose, the global LS-based estimation problem is
described as [R8]:

w; = arg min
wr

. ! . N 2 2
{A*“csnm% NN (di(G) - udkw) } , )
7=0 k=1
where,
|-||2 - the /,-norm of a vector,
0 > 0 - the regularization constant,

A - the forgetting factor.

* The dRLS algorithm solves (2) 1n a distributed manner.

[R8] F.S. Cattivelli, C.G. Lopes, and A.H. Sayed, “Diffusion recursive least-squares for distributed estimation over adaptive
networks,” IEEE Transactions on Signal Processing, vol. 56, no. 5, pp. 1865-1877, 2008.
10



Problem Formulation

* In practice, v,(i) may contain impulsive noise, severely
corrupting the desired output d,(7).

* With such noise processes, the algorithms obtained from (2),
e.g., the dRLS algorithm, would fail to work.

11



Proposed R-dRLS algorithm

» Derivation of algorithm

* We focus here on the adapt-then-combine (ATC)
implementation of the diffusion strategy, which has been
shown to outperform the combine-then-adapt (CTA)
implementation.

* In fact, the CTA version is obtained by reversing the
adaptation step and combination step in the ATC version.

» Step 1: we start with the adaptation step.

12



Proposed R-dRLS algorithm

Every node k, at time instant z, finds an intermediate estimate
YPr.; of w® by minimizing the individual local cost function:

Ji ('l,bk,,z) :”'l;bk,.i — wk:i—l”ék,i
+ [di () — uf pe.i],

with Qi = R ; — ukzugl where

1
Ry XTSI+ Ny juy
J=0

T
=ARy i—1 + Ur iU ;

is the time-averaged correlation matrix for the regression vector at
node k, wy_;—1 is an estimate of w at node k at time instant ¢ — 1,
and I is the identity matrix. Notice that the form ||z||3 £ =’ Q=
in (3) defines the Riemmanian distance between vectors ), ; and
Wek,i—1.-

(3)

(4)

13



Proposed R-dRLS algorithm

* Setting the derivative of Jx (ki) with respect to ¥k ; to
zero, we obtain

Yr,i = Wii—1 + Priugier(i), (35)

where er (1) = di(i) — ufﬂiwkji_l stands for the output error at
node k and Py ; £ R;i. Using the matrix inversion lemma, we

have
1 Py i _1ug mfg-Pk i—1
P i = P i—1 — i i ’ ’ ,

. A ( et At ul Pri—1ug (6)

where Py ; is initialized as Py o =0 '1I.

* Obviously, the adverse effect of an impulsive noise sample at
time instant i will propagate via e, (7).

14



Proposed R-dRLS algorithm

* To make the algorithm robust in impulsive noise scenarios, we
propose to minimize (3) under the following constraint:

i — wii—1]l5 < & (i — 1), (7)

where &, (7 — 1) is a positive bound. This constraint is employed to
enforce the squared norm of the update of the intermediate estimate
not to exceed the amount & (¢ — 1) regardless of the type of noise
(possibly, impulsive noise), thereby guaranteeing the robustness of
the algorithm.

o If (5) satisties (7), 1.e.,
lgr,ill2lex (3)] < V/€k(i — 1), (8)

where gk = Priur,; represents the Kalman gain vector, then
(5) 1s a solution of the above constrained minimization problem.

15



Proposed R-dRLS algorithm

* If (8) 1s not satisfied (usually in the case of
appearance of impulsive noise samples), we propose
to the following normalized update to replace (5),

Yhi = Wiio1 + V& — 1) sign(e (i), 9)
lgr.il2
where sign(-) 1s the sign function. Obviously, (9) satisfies the equal

sign 1n the constraint (7).

* Combining (5), (8) and (9), we obtain the adaptation step for
each node £ as:

Yr,i = Wi, i—1 + min

\/fk(i—l) o "
Hgk,z‘l‘zlek(i)" 1:| Gk, k(7). (10)

16



Proposed R-dRLS algorithm

» Step 2: the intermediate estimates ¥m.: from the
neighborhood m € N of node k linearly weighted,
vielding a more reliable estimate:

We,i = Z Cm,k",bm,i: (11)

meN

where the combination coefficients {c,, x} are non-negative, and
satisfy:
Z Cm.k = 1, and ¢y = 0if m & Ni. (12)
meN,
* ¢, denotes the weight assigned by node £ to its neighbor
intermediate vpm, ;. In this paper, {c,, ,} are determined by a
static rule.

17



Proposed R-dRLS algorithm

» Step 3: to further improve the performance, we
propose to recursively adjust £,(7) as:

Ce(i) =B (i — 1) + (1 = B) |9, — wii-1ll3
= B&k(i — 1) + (1 — B) min[||gk.i|lex (i), & (i — 1)],  (13)
(i) = > cmrlm(i),

meN}

where, f (0<f<1) is a forgetting factor.

In (13), &,(/) is initialized as €x(0) = Ecody/(Moy 1)  E isa
positive integer, and 03 5 and Jﬁ? r are powers of signal d,(7)
and U, , respectively.

18



Proposed R-dRLS algorithm

» Performance explanation

(10) shows that the operation mode of the proposed algorithm i1s
twofold.

At the early iterations, compared with ||gx.i||3ex (), the value of
¢, (7) can be high so that the algorithm will behave as the dRLS
algorithm.

Whenever an impulsive noise sample appears, due to its significant
magnitude, the algorithm will work as a dRLS update multiplied
by a very small ‘step size’ scaling factor given

by /& (i —1)/(||gk.i|l2]ex@)]) , thus avoiding the negative influence
of impulsive noise on the estimation.

¢, (1) computed by (13) over the iterations is decreasing over the
iterations, thus further improving the algorithm robustness against
impulsive noise. 19



Proposed R-dRLS algorithm

» DNC method
To improve the tracking capability of the algorithm for a

sudden change of the parameter vector, inspired by the single-

agent scenario [R9], we propose the DNC method.

Firstly, a variable A (2) at node k is computed once for every V;
iterations, to judge whether the unknown vector has a change or not.

: 2 (4 2 (i—1) eZ (i—Vi+1)
In this step, al , = ([ e el o, BT D
P> @k, O g, ill27 llwg,i—1 153777 llwk,i—v, +1 113
with O(-) denoting the ascending arrangement for its arguments, and
e=|[1,...,1,0,..., 0]T is a vector whose first V; — V; elements set to

one, where V; is a positive integer with Vg < V;. Thus, the product
a‘g’ie can reduce the effect of outliers (e.g., impulsive noise samples)
when computing Ag (z). Typically, for both V; and V;, good choices
are Vi = oM with p = 1 ~ 3 and Vg = 0.75V; . Note that, for
larger occurence probability of impulsive noise, the value of V; — Vj

should be decreased to discard the impulsive noise samples.

20



Proposed R-dRLS algorithm

Secondly, if Ax(z) > tmn, where ty is a predefined threshold,
meaning a change of w*® has occured, then we need to reset £ (%) to
its initial value £ (0). More importantly, Py ; is also re-initialized
with Py . It is worth noting that since the parameters v, N, o,
and s are not affected by each other, their choices are simplified.

» The proposed R-dRLS algorithm with the DNC
method 1s summarized in Table 1.

[R9] L.R. Vega, H. Rey, J. Benesty, and S. Tressens, “A new robust variable step-size NLMS algorithm,” IEEE Transactions on Signal
Processing, vol. 56, no. 5, pp. 1878—-1893, 2008.

21



Proposed R-dRLS algorithm

Table 1. Proposed R-dRLS Algorithm with the DNC Method.
Parameters: 0 < 8 < 1, A,  and E. (R-dRLS); p and ¢4, (DNC)
o2
Initialization: wy,,0 = 0, Px o = § ' I and £;,(0) = E. - jf;‘k (R-dRLS)
Outd.k = Onew.s = 0, V; = oM, and V; = 0.75V, (DNC)
R-dRLS algorithm:
er(i) = di (i) — up ;wk,i—1
Pk,i—l“k,iufgipk.i—l
Mul P qup

P.;=*+ (Pk,i—l -

gr,i = P iup;

: VER(GE-1) .
P, = Wi j—1 + min [m, 1?| gr.ier(?)

Wik, — Z Cm,k'lffm,z‘
meNT,

DNC method:

Step 1: to compute Ay (2)

ift=nV;,n=0,1,2, ...

T _ o e2 (i) e7 (i—1) e (i—Vi+1)
ﬂ.k i = 3 5 PRI 2
! ||‘U-k,1‘||2 ||’u-k,7;_1||2 ||“k,i—vt+1||2

al .e
enew,k = Z Cm,k Vfﬂl—,;’d
mENk
A () _ 9ne'.-\:v,!r.:_e-:)ld,.ic
AV = TG

end
Step 2: to reset £ (2)
if Ap(i) > ty
Ck (1) = &k (0), Pri = Pro
elseif Onew,k > Oon, k
Cr(i) = €x(i — 1) + (Onew,k — Oald, k)

else
Céc(i) = B&k(i — 1) + (1 — B) min [||g.ilI3€% (i), &r(i —1)]
Ek(i) = 22 em,kCm(i)

meN,
Go]d,k — Qnew,k 22




Simulation results

e A diffusion network with N=20 nodes i1s considered.

* The parameter vector w® of the length M=16 is generated
randomly from a zero-mean uniform distribution, with a unit norm.

« To evaluate the tracking capability, w® changes to —w? at the
middle of iterations.

* The input vector has a shifted structure,
ie., uki = [uk(i),ur(i — 1), ..., ur(i — M + 1)]7, where u,(i) is
colored and generated by a second-order autoregressive
system wui(2) = 1.6ur(i — 1) — 0.81ur(z — 2) + ex(2) , with €x(2)
being a zero-mean white Gaussian process with variance oc .

* The averaged network mean square deviation 1s used for assessing
. ° N
the algorithm performance, i.e., MSDw (i) = &+ > E{||w® — ws i||3}.
k=1

* All results are the average over 200 independent trials.
23



Simulation results

» Bernoulli-Gaussian (BG) process

* The additive noise v,(7) includes the ICH

0.8

background noise 6,(7) plus the

04

impulsive noise #,(i), where 0,(i) 1s R S ..

node k

zero-mean white Gaussian noise with

. 2
variance g, .

0.02-

 Fig. 1 gives the values of 62, and o7 , R R T S I

node k

at all nodes.

Fig. 1. Profiles of crf, . and Ug,k.

The impulsive noise 7y (2) is described by the BG process,
Mk(2) = bk (1) - gr(2), where bx(7) is a Bernoulli process with proba-
bility distribution P[bx(i) = 1] = p,-r and P[br(i) = 0] =1 — p,
and gi(7) is a zero-mean white Gaussian process with variance
ﬁg,k- Here, we set p,r as a random number in the range of

0.001,0.05], and o>, = 10000 ., where o ;. denotes the power
g Y, Y, p

of yr(i) = uf‘iw". 24



Simulation results

The R-dRLS (no cooperation) algorithm

performs an independent estimation at each B
o ... dRLS
node. For RLS-type algorithms, we choose |7 ko

4=0.995 and 0=0.01.

As expected, the dRLS algorithm has a poor
performance in the presence of impulsive noise.

Both the dSE-LMS and RVWC-dLMS
algorithms are significantly less sensitive t0 (g

0 500 1000 1500 2000 2500 3000 3500 4000 4500 5000

impulsive noise, but their convergence is slow. feratons
Apart from the robustness against imPU.ISiVC Fig. 2. Averaged network MSD performance of the algorithms in

impulsive noise with BG process. Parameter setting of the algo-

nOISe, the pI’OpOSGd R-dRLS algorlthm haS aISO rithms (with notations from references) is as follows: p,=0.015
(dSE-LMS); 5=0.98 and E.=1 (R-dRLS); p=3 and t;,=25 (DNC).
a fast convergence. For the RVWC-dLMS, the Metropolis rule is also used for the com-
bination coefficients in the adaptation step; its other parameters are

The proposed DNC method can retain the good | £=16-2=2:58 A=0.98 and 1.1=0.03.
tracking capability of the R-dRLS algorithm,
only with a slight degradation in steady-state
performance.

25



Simulation results

= = R-dRLS(no cooperation)| '
------- dRLS

s | = = =dSE-LMS

: RVWC-dLMS
R-dRLS with DNC

» o-Stable process

The impulsive noise is modeled by the a-stable

,(68)

process with a characteristic function ¢(t) = exp(—7[t|*) -

MSD

where the characteristic exponent a € (0, 2]
describes the impulsiveness of the noise (smaller o

leads to more impulsive noise samples) and y > 0

o 500 1000 1500 2000 2500 3000 3500 4000 4500 5000
iterations

represents the dispersion level of the noise.
Fig. 3. Averaged network MSD performance of the algorithms in

In thlS example thus we Set o= 1 15 and y — 1/1 5 a-Stable noise. Parameter setting is the same as in Fig. [2]
N . .

. _ &
Fig. 4 shows the node-wise steady-state MSD of the

robust algorithms (ic., excluding the ARLS) against | o ou ;AN

impulsive noise, by averaging over 500

instantaneous MSD values in the steady-state.

35| —

steady-state MSD (dB)

As can be seen from Figs. 3 and 4, the proposed R-
dRLS algorithm with DNC outperforms the known o e

+— RVWC-dLMS
—&— R-dRLS with DNC

robust algorithms. e e |

-45 -
1] 2 4 6 8 10 12 14 16 18 20
node k

Fig. 4. Node-wise steady-state MSD of the algorithms in a-Stable
noise.



Conclusions

* In this paper, the R-dRLS algorithm has been proposed, based
on the minimization of an individual RLS cost function with a
time-dependent constraint on the squared norm of the
intermediate estimate update.

* The constraint is dynamically adjusted based on the diffusion
strategy with the help of side information.

* The novel algorithm not only 1s robust against impulsive noise,
but also has fast convergence.

* Furthermore, to track the change of parameters of interest, a
detection method (DNC method) 1s proposed for re-initializing
the constraint.

* Simulation results have verified that the proposed algorithm
performs better than known algorithms in impulsive noise

scenarios.
27



Thanks

Please feel free contact me at hgzhao swjtu(@126.com, 1f
you have any further questions.
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