

DNN-based Speech Mask Estimation for Eigenvector Beamforming

Lukas Pfeifenberger, Matthias Zöhrer, and Franz Pernkopf

Signal Processing and Speech Communication Laboratory Graz University of Technology, Graz, Austria

Motivation

- Boost beamforming performance using NNs
- Replace Direction-Of-Arrival estimate by a speech mask
- Use speech mask to construct the MVDR, GSC and GEV Beamformers, and a Postfilter
- Speech mask can be learned from eigenvector features

Sources: www.maloyalaser.com GeorgHH via Wikimedia Commons www.polycom.com www.amazon.com

Why use a speech mask?

- Direction-Of-Arrival estimate:
 - Direct-path steering vector
 - Target leakage may occur

Why use a speech mask?

- Direction-Of-Arrival estimate:
 - Direct-path steering vector
 - Target leakage may occur
- Speech mask:
 - Multi-path steering vector (models reverberation)
 - Sufficient to construct Beamformer + Postfilter
 - Existing estimation approaches: use magnitude features [Erdogan et al., 2016] and [Heymann et al., 2016]

Why use a speech mask?

- Direction-Of-Arrival estimate:
 - Direct-path steering vector
 - Target leakage may occur
- Speech mask:
 - Multi-path steering vector (models reverberation)
 - Sufficient to construct Beamformer + Postfilter
 - Existing estimation approaches: use magnitude features [Erdogan et al., 2016] and [Heymann et al., 2016]

Our idea:

- Use eigenvector features
- Exploit spatial information
- Independent from array geometry and signal energy

Outline

Outline

- 1. System Model
- 2. Super-directive Beamforming: MVDR, GSC, GEV
- 3. Speech Mask Estimation
- 4. Experiments

System Model

System Model

System Model

System Model

System Model

- Single speech source: S(k, l)
- Multi-path ATF: A(k, l)
- Unknown noise: N(k, l)
- System model: $\boldsymbol{Z}(k,l) = S(k,l)\boldsymbol{A}(k,l) + \boldsymbol{N}(k,l)$
- PSDs: $\Phi_{ZZ} = \Phi_{SS} + \Phi_{NN} = AA^H \Phi_S + \Phi_{NN}$

Super-directive Beamforming: MVDR, GSC, GEV

MVDR

Optimal MWF = MVDR + Wiener Postfilter: [Vary and Martin, 2006]

$$\mathbf{W}_{OPT} = \mathbf{\Phi}_{ZZ}^{-1} \mathbf{A} \mathbf{\Phi}_{S} = \underbrace{\frac{\mathbf{\Phi}_{NN}^{-1} \mathbf{A}}{\mathbf{A}^{H} \mathbf{\Phi}_{NN}^{-1} \mathbf{A}}}_{\mathbf{W}_{MVDR}} \cdot \underbrace{\frac{\mathbf{\Phi}_{S}}{\mathbf{\Phi}_{S} + \left[\mathbf{A}^{H} \mathbf{\Phi}_{NN}^{-1} \mathbf{A}\right]^{-1}}}_{G = \frac{\xi}{1+\xi}}$$

MVDR

Optimal MWF = MVDR + Wiener Postfilter: [Vary and Martin, 2006]

$$\mathbf{W}_{OPT} = \mathbf{\Phi}_{ZZ}^{-1} \mathbf{A} \Phi_{S} = \underbrace{\frac{\mathbf{\Phi}_{NN}^{-1} \mathbf{A}}{\mathbf{A}^{H} \mathbf{\Phi}_{NN}^{-1} \mathbf{A}}}_{\mathbf{W}_{MVDR}} \cdot \underbrace{\frac{\Phi_{S}}{\mathbf{\Phi}_{S} + \left[\mathbf{A}^{H} \mathbf{\Phi}_{NN}^{-1} \mathbf{A}\right]^{-1}}}_{G = \frac{\xi}{1+\xi}}$$

- Substitute ATF A by steering vector F:
 - use dominant Eigenvector: $F
 ightarrow v_{S_1}$ [Pfeifenberger et al., 2016]
 - EVD of the speech PSD: $oldsymbol{\Phi}_{SS} = \sum_{m=1}^{M} oldsymbol{v}_{S_m} oldsymbol{v}_{S_m}^H \lambda_{S_m}$
 - includes multi-path propagation: $F = A \left[\frac{\phi_S}{\lambda_{S_1} A^H v_{S_1}} \right]$

MVDR

Optimal MWF = MVDR + Wiener Postfilter: [Vary and Martin, 2006]

$$\boldsymbol{W}_{OPT} = \boldsymbol{\Phi}_{ZZ}^{-1} \boldsymbol{A} \boldsymbol{\Phi}_{S} = \underbrace{\frac{\boldsymbol{\Phi}_{NN}^{-1} \boldsymbol{A}}{\boldsymbol{A}^{H} \boldsymbol{\Phi}_{NN}^{-1} \boldsymbol{A}}}_{\boldsymbol{W}_{MVDR}} \cdot \underbrace{\frac{\boldsymbol{\Phi}_{S}}{\boldsymbol{\Phi}_{S} + \left[\boldsymbol{A}^{H} \boldsymbol{\Phi}_{NN}^{-1} \boldsymbol{A}\right]^{-1}}}_{\boldsymbol{G} = \frac{\boldsymbol{\xi}}{1+\boldsymbol{\xi}}}$$

- Substitute ATF A by steering vector F:
 - use dominant Eigenvector: $F
 ightarrow v_{S_1}$ [Pfeifenberger et al., 2016]
 - EVD of the speech PSD: $oldsymbol{\Phi}_{SS} = \sum_{m=1}^{M} oldsymbol{v}_{S_m} oldsymbol{v}_{S_m}^H \lambda_{S_m}$
 - includes multi-path propagation: $F = A \left[\frac{\phi_S}{\lambda_{S_1} A^H v_{S_1}} \right]$
- Postfilter G:
 - uses multi-channel SNR: $\xi = \text{Tr} \{ \Phi_{NN}^{-1} \Phi_{SS} \}$

MVDR

Optimal MWF = MVDR + Wiener Postfilter: [Vary and Martin, 2006]

$$\mathbf{W}_{OPT} = \mathbf{\Phi}_{ZZ}^{-1} \mathbf{A} \Phi_{S} = \underbrace{\frac{\mathbf{\Phi}_{NN}^{-1} \mathbf{A}}{\mathbf{A}^{H} \mathbf{\Phi}_{NN}^{-1} \mathbf{A}}}_{\mathbf{W}_{MVDR}} \cdot \underbrace{\frac{\Phi_{S}}{\mathbf{\Phi}_{S} + \left[\mathbf{A}^{H} \mathbf{\Phi}_{NN}^{-1} \mathbf{A}\right]^{-1}}}_{G = \frac{\xi}{1+\xi}}$$

- Substitute ATF A by steering vector F:
 - use dominant Eigenvector: $F
 ightarrow v_{S_1}$ [Pfeifenberger et al., 2016]
 - EVD of the speech PSD: $oldsymbol{\Phi}_{SS} = \sum_{m=1}^{M} oldsymbol{v}_{S_m} oldsymbol{v}_{S_m}^H \lambda_{S_m}$
 - includes multi-path propagation: $F = A \left[\frac{\phi_S}{\lambda_{S_1} A^H v_{S_1}} \right]$
- Postfilter G:
 - uses multi-channel SNR: $\xi = \text{Tr} \left\{ \Phi_{NN}^{-1} \Phi_{SS} \right\}$

Required: $\Phi_{SS}(k, l)$ and $\Phi_{NN}(k, l)$

- Split the MVDR into two orthogonal components:
 - $W_{MVDR} pprox W_{GSC} = F BH_{AIC}$ [Hoshuyama et al., 1999]

- Split the MVDR into two orthogonal components:
 - $W_{MVDR} pprox W_{GSC} = F BH_{AIC}$ [Hoshuyama et al., 1999]
- Steering Vector F:
 - distortionless response: $F^H A \stackrel{!}{=} 1$

- Split the MVDR into two orthogonal components:
 - $W_{MVDR} pprox W_{GSC} = F BH_{AIC}$ [Hoshuyama et al., 1999]
- Steering Vector F:
 - distortionless response: $F^H A \stackrel{!}{=} 1$
- Blocking Matrix B:
 - steers "nulls" towards speaker: $B^H A \stackrel{!}{=} 0$
 - i.e.: $\boldsymbol{B} = \boldsymbol{I} \boldsymbol{F} \boldsymbol{F}^H$ [Shmulik et al., 2012]

- Split the MVDR into two orthogonal components:
 - $W_{MVDR} pprox W_{GSC} = F BH_{AIC}$ [Hoshuyama et al., 1999]
- Steering Vector F:
 - distortionless response: $F^H A \stackrel{!}{=} 1$
- Blocking Matrix B:
 - steers "nulls" towards speaker: $B^H A \stackrel{!}{=} 0$
 - i.e.: $\boldsymbol{B} = \boldsymbol{I} \boldsymbol{F} \boldsymbol{F}^H$ [Shmulik et al., 2012]
- Adaptive Interference Canceller H_{AIC}:
 - adapted during speech absence using NLMS

- Split the MVDR into two orthogonal components:
 - $W_{MVDR} pprox W_{GSC} = F BH_{AIC}$ [Hoshuyama et al., 1999]
- Steering Vector F:
 - distortionless response: $F^H A \stackrel{!}{=} 1$
- Blocking Matrix B:
 - steers "nulls" towards speaker: $B^H A \stackrel{!}{=} 0$
 - i.e.: $\boldsymbol{B} = \boldsymbol{I} \boldsymbol{F} \boldsymbol{F}^H$ [Shmulik et al., 2012]
- Adaptive Interference Canceller H_{AIC}:
 - adapted during speech absence using NLMS

Required: $\Phi_{SS}(k, l)$

10

GEV

- Maximizes the SNR ξ : [Warsitz and Haeb-Umbach, 2007]
 - $W_{SNR} = \arg \max_{W} \xi$
 - eigenvalue problem (rank = 1): $\Phi_{NN}^{-1}\Phi_{SS}W_{SNR} = \xi W_{SNR}$

10

GEV

- Maximizes the SNR ξ : [Warsitz and Haeb-Umbach, 2007]
 - $W_{SNR} = \arg \max_{W} \xi$
 - eigenvalue problem (rank = 1): $\Phi_{NN}^{-1}\Phi_{SS}W_{SNR} = \xi W_{SNR}$
- Modification for reduced distortion: [Pfeifenberger et al., 2016]
 - $W_{GEV} = PF$
 - reduced distortions: $\boldsymbol{W}_{GEV}^{H} \boldsymbol{A} \approx 1$
 - projection matrix: $P = \frac{\Phi_{NN} W_{SNR} W_{SNR}^H}{W_{SNR}^H \Phi_{NN} W_{SNR}}$

¹⁰ GEV

- Maximizes the SNR ξ : [Warsitz and Haeb-Umbach, 2007]
 - $W_{SNR} = \arg \max_{W} \xi$
 - eigenvalue problem (rank = 1): $\Phi_{NN}^{-1}\Phi_{SS}W_{SNR} = \xi W_{SNR}$
- Modification for reduced distortion: [Pfeifenberger et al., 2016]
 - $W_{GEV} = PF$
 - reduced distortions: $\boldsymbol{W}_{GEV}^{H} \boldsymbol{A} \approx 1$
 - projection matrix: $P = \frac{\Phi_{NN}W_{SNR}W_{SNR}^{H}}{W_{SNR}^{H}\Phi_{NN}W_{SNR}}$

Required: $\Phi_{SS}(k,l)$ and $\Phi_{NN}(k,l)$

Speech Mask Estimation

² Speech Mask Estimation

Speech and noise PSD estimates: [Higuchi et al., 2016]

$$\hat{\Phi}_{SS}(k,l) = \frac{\sum_{t=l}^{l+T} Z(k,t) Z^{H}(k,t) p_{\text{SPP}}(k,t)}{\sum_{t=l}^{l+T} p_{\text{SPP}}(k,t)}$$

$$\hat{\Phi}_{NN}(k,l) = \frac{\sum_{t=l}^{l+T} Z(k,t) Z^{H}(k,t) (1-p_{\text{SPP}}(k,t))}{\sum_{t=l}^{l+T} (1-p_{\text{SPP}}(k,t))}$$

Speech Mask Estimation

Speech and noise PSD estimates: [Higuchi et al., 2016]

$$\hat{\Phi}_{SS}(k,l) = \frac{\sum_{t=l}^{l+T} Z(k,t) Z^{H}(k,t) p_{\mathsf{SPP}}(k,t)}{\sum_{t=l}^{l+T} p_{\mathsf{SPP}}(k,t)}$$

$$\hat{\Phi}_{NN}(k,l) = \frac{\sum_{t=l}^{l+T} Z(k,t) Z^{H}(k,t) (1-p_{\mathsf{SPP}}(k,t))}{\sum_{t=l}^{l+T} (1-p_{\mathsf{SPP}}(k,t))}$$

- Speech presence probability p_{SPP}:
 - ground truth: $p_{\text{SPP,opt}} = \frac{\xi}{1+\xi}$
 - equal to the Wiener postfilter G

² Speech Mask Estimation

Speech and noise PSD estimates: [Higuchi et al., 2016]

$$\hat{\Phi}_{SS}(k,l) = \frac{\sum_{t=l}^{l+T} Z(k,t) Z^{H}(k,t) p_{\mathsf{SPP}}(k,t)}{\sum_{t=l}^{l+T} p_{\mathsf{SPP}}(k,t)}$$

$$\hat{\Phi}_{NN}(k,l) = \frac{\sum_{t=l}^{l+T} Z(k,t) Z^{H}(k,t) (1-p_{\mathsf{SPP}}(k,t))}{\sum_{t=l}^{l+T} (1-p_{\mathsf{SPP}}(k,t))}$$

- Speech presence probability p_{SPP}:
 - ground truth: $p_{\text{SPP,opt}} = \frac{\xi}{1+\xi}$
 - equal to the Wiener postfilter G

Observation: $p_{\text{SPP,opt}}$ is related to the dominant Eigenvector v_{Z_1}

EVD of the noisy speech PSD: $m{\Phi}_{ZZ} = \sum_{m=1}^M m{v}_{Z_m} m{v}_{Z_m}^H \lambda_{Z_m}$

Distribution of $v_{Z_1}(k, l)$ colored with $p_{\text{SPP,opt}}(k, l)$, for $k \approx 2650 Hz$:

Distribution of $v_{Z_1}(k, l)$ colored with $p_{\text{SPP,opt}}(k, l)$, for $k \approx 2650 Hz$:

Speech Mask Estimation

Lukas Pfeifenberger, Matthias Zöhrer, and Franz Pernkopf

Experiments

Experiments

Experiments

- Feature vector variants:
 - Eigenvectors: $\boldsymbol{x}_{\text{ev}}(k,l) = \left[\text{Re}\{\boldsymbol{v}_{Z_1}(k,l)\}^T, \text{Im}\{\boldsymbol{v}_{Z_1}(k,l)\}^T \right]^T$
 - Eigenvector-deltas: $\boldsymbol{x}_{\text{evd}}(k,l) = |\boldsymbol{v}_{Z_1}(k,l)^H \boldsymbol{v}_{Z_1}(k,l+\Delta)|$
 - Energy per channel: $\boldsymbol{x}_{psd}(k,l,m) = 20log_{10}|Z_m(k,l)|$

Experiments

Experiments

- Feature vector variants:
 - Eigenvectors: $\boldsymbol{x}_{\text{ev}}(k,l) = \left[\text{Re}\{\boldsymbol{v}_{Z_1}(k,l)\}^T, \text{Im}\{\boldsymbol{v}_{Z_1}(k,l)\}^T \right]^T$
 - Eigenvector-deltas: $\boldsymbol{x}_{evd}(k,l) = |\boldsymbol{v}_{Z_1}(k,l)^H \boldsymbol{v}_{Z_1}(k,l+\Delta)|$
 - Energy per channel: $\boldsymbol{x}_{psd}(k,l,m) = 20log_{10}|Z_m(k,l)|$
- NN variants:
 - ev_lstm : LSTM cells + $x_{ev}(k, l)$ features
 - evd_lstm: LSTM cells + x_{evd}(k, l) features
 - evd_mlp: FF layers + x_{evd}(k, l) features
 - psd_lstm: LSTM cells + $x_{psd}(k, l)$ features

Training data: CHiME4 corpus [Barker et al., 2015]

- 2 and 6 channel data
- 14658 utterances
- 4 background noise types: BUS, STR, PED, CAF
- 12 speakers
- provides ground truth $\xi(k, l)$ for training the NN

Speech mask prediction error

architactura	n_{Δ}		predi	iction erro	# of woights	
architecture		n _h	train	valid	test	# OI WEIGINS
ev_lstm	-	-	3.375	4.568	5.166	557176
ev_lstm	-	10	2.176	3.119	3.347	799784
ev_lstm	-	20,10	1.889	2.685	3.003	1457704
evd_lstm	3	10	2.308	2.299	2.823	614744
evd_lstm	5	10	2.251	2.244	2.689	655864
evd_lstm	7	-	2.750	2.761	3.730	546896
evd_lstm	7	10	2.281	2.267	2.690	696984
evd_lstm	7	20,10	2.184	2.183	2.520	1252104
evd_mlp	3	10	2.452	2.424	3.212	76843
evd_mlp	5	10	2.405	2.372	3.069	81983
evd_mlp	7	-	2.752	2.762	3.975	68362
evd_mlp	7	10	2.384	2.376	3.156	87123
evd_mlp	7	20,10	2.349	2.285	2.825	156513
psd_lstm	-	-	3.489	4.391	4.603	544840
psd₋lstm	-	10	2.897	3.722	3.741	676424
psd_lstm	-	20,10	2.711	3.415	3.489	1210984

$$\mathrm{error} = \frac{100}{KL} \sum_{k=1}^{K} \sum_{l=1}^{L} \left| p_{\mathrm{SPP,est,2}}(k,l) - p_{\mathrm{SPP,opt}}(k,l) \right|$$

Speech mask prediction error

architactura	n_{Δ}		predi	iction erro	# of woights	
architecture		n _h	train	valid	test	# OI WEIGINS
ev_lstm	-	-	3.375	4.568	5.166	557176
ev_lstm	-	10	2.176	3.119	3.347	799784
ev_lstm	-	20,10	1.889	2.685	3.003	1457704
evd_lstm	3	10	2.308	2.299	2.823	614744
evd_lstm	5	10	2.251	2.244	2.689	655864
evd_lstm	7	-	2.750	2.761	3.730	546896
evd_lstm	7	10	2.281	2.267	2.690	696984
evd_lstm	7	20,10	2.184	2.183	2.520	1252104
evd_mlp	3	10	2.452	2.424	3.212	76843
evd_mlp	5	10	2.405	2.372	3.069	81983
evd_mlp	7	-	2.752	2.762	3.975	68362
evd_mlp	7	10	2.384	2.376	3.156	87123
evd_mlp	7	20,10	2.349	2.285	2.825	156513
psd_lstm	-	-	3.489	4.391	4.603	544840
psd₋lstm	-	10	2.897	3.722	3.741	676424
psd_lstm	-	20,10	2.711	3.415	3.489	1210984

$$\mathrm{error} = \frac{100}{KL} \sum_{k=1}^{K} \sum_{l=1}^{L} \left| p_{\mathrm{SPP,est,2}}(k,l) - p_{\mathrm{SPP,opt}}(k,l) \right|$$

PESQ and PEASS/OPS scores [Emiya et al., 2011]

architecture	n_{Δ}	n_h	PL	ESQ [MC	OPS [%]			
architecture			train	valid	test	train	valid	test
ev_lstm, MVDR, 6ch	-	20,10	2.204	1.850	1.788	62	46	39
evd_lstm, MVDR, 6ch	7	20,10	1.948	1.773	1.748	53	45	39
evd_mlp, MVDR, 6ch	3	10	1.866	1.713	1.630	50	45	40
psd_lstm, MVDR, 6ch	-	20,10	1.826	1.663	1.636	54	47	45
ev_lstm, GSC, 6ch	-	20,10	2.045	1.760	1.742	51	41	37
evd_lstm, GSC, 6ch	7	20,10	1.889	1.714	1.706	46	39	37
evd₋mlp, GSC, 6ch	3	10	1.822	1.667	1.602	43	38	37
psd_lstm, GSC, 6ch	-	20,10	1.783	1.620	1.622	49	43	43
ev_lstm, GEV, 6ch	-	20,10	2.443	2.007	1.891	72	58	51
evd_lstm, GEV, 6ch	7	20,10	2.226	1.969	1.874	67	59	52
evd₋mlp, GEV, 6ch	3	10	2.131	1.900	1.758	65	58	51
*psd_lstm, GEV, 6ch	-	20,10	1.977	1.758	1.724	63	54	48
ev_lstm, GEV, 2ch	-	10,5	1.965	1.706	1.725	51	44	45
evd₋mlp, GEV, 2ch	3	5	1.980	1.778	1.774	44	40	40
BeamformIt!, 5ch	-	-	1.350	1.292	1.326	31	36	35
**CGMM-EM, 6ch	-	-	1.635	1.483	1.468	48	42	38

*similar to CHiME4-contributions: [Erdogan et al., 2016] and [Heymann et al., 2016] **CHiME3 winner: [Higuchi et al., 2016]

PESQ and PEASS/OPS scores [Emiya et al., 2011]

architecture	n_{Δ}	n_h	PL	ESQ [MC	OPS [%]			
architecture			train	valid	test	train	valid	test
ev_lstm, MVDR, 6ch	-	20,10	2.204	1.850	1.788	62	46	39
evd_lstm, MVDR, 6ch	7	20,10	1.948	1.773	1.748	53	45	39
evd₋mlp, MVDR, 6ch	3	10	1.866	1.713	1.630	50	45	40
psd_lstm, MVDR, 6ch	-	20,10	1.826	1.663	1.636	54	47	45
ev_lstm, GSC, 6ch	-	20,10	2.045	1.760	1.742	51	41	37
evd_lstm, GSC, 6ch	7	20,10	1.889	1.714	1.706	46	39	37
evd₋mlp, GSC, 6ch	3	10	1.822	1.667	1.602	43	38	37
psd_lstm, GSC, 6ch	-	20,10	1.783	1.620	1.622	49	43	43
ev_lstm, GEV, 6ch	-	20,10	2.443	2.007	1.891	72	58	51
evd_lstm, GEV, 6ch	7	20,10	2.226	1.969	1.874	67	59	52
evd₋mlp, GEV, 6ch	3	10	2.131	1.900	1.758	65	58	51
*psd_lstm, GEV, 6ch	-	20,10	1.977	1.758	1.724	63	54	48
ev_lstm, GEV, 2ch	-	10,5	1.965	1.706	1.725	51	44	45
evd₋mlp, GEV, 2ch	3	5	1.980	1.778	1.774	44	40	40
BeamformIt!, 5ch	-	-	1.350	1.292	1.326	31	36	35
**CGMM-EM, 6ch	-	-	1.635	1.483	1.468	48	42	38

*similar to CHiME4-contributions: [Erdogan et al., 2016] and [Heymann et al., 2016] **CHiME3 winner: [Higuchi et al., 2016]

PESQ and PEASS/OPS scores [Emiya et al., 2011]

architecture	n_{Δ}	n_h	Pl	ESQ [MC	OPS [%]			
architecture			train	valid	test	train	valid	test
ev_lstm, MVDR, 6ch	-	20,10	2.204	1.850	1.788	62	46	39
evd_lstm, MVDR, 6ch	7	20,10	1.948	1.773	1.748	53	45	39
evd_mlp, MVDR, 6ch	3	10	1.866	1.713	1.630	50	45	40
psd_lstm, MVDR, 6ch	-	20,10	1.826	1.663	1.636	54	47	45
ev_lstm, GSC, 6ch	-	20,10	2.045	1.760	1.742	51	41	37
evd_lstm, GSC, 6ch	7	20,10	1.889	1.714	1.706	46	39	37
evd₋mlp, GSC, 6ch	3	10	1.822	1.667	1.602	43	38	37
psd_lstm, GSC, 6ch	-	20,10	1.783	1.620	1.622	49	43	43
ev_lstm, GEV, 6ch	-	20,10	2.443	2.007	1.891	72	58	51
evd_lstm, GEV, 6ch	7	20,10	2.226	1.969	1.874	67	59	52
evd₋mlp, GEV, 6ch	3	10	2.131	1.900	1.758	65	58	51
*psd_lstm, GEV, 6ch	-	20,10	1.977	1.758	1.724	63	54	48
ev_lstm, GEV, 2ch	-	10,5	1.965	1.706	1.725	51	44	45
evd₋mlp, GEV, 2ch	3	5	1.980	1.778	1.774	44	40	40
BeamformIt!, 5ch	-	-	1.350	1.292	1.326	31	36	35
**CGMM-EM, 6ch	-	-	1.635	1.483	1.468	48	42	38

*similar to CHiME4-contributions: [Erdogan et al., 2016] and [Heymann et al., 2016] **CHiME3 winner: [Higuchi et al., 2016] Results

• Example 1: мо4_422C0205_CAF

Results

Example 2: F01_22HC010W_BUS

complementary output: $Y_{n,GEV}(k, l)$

² Conclusion

- Take-home message:
 - the MVDR, GSC and GEV Beamformers and the Postfilter solely depend on the speech mask
 - speech mask estimate can be learned from eigenvector features
- Future work:
 - reduce NN size and complexity
 - multiple speakers

² Conclusion

- Take-home message:
 - the MVDR, GSC and GEV Beamformers and the Postfilter solely depend on the speech mask
 - speech mask estimate can be learned from eigenvector features
- Future work:
 - reduce NN size and complexity
 - multiple speakers

Thank you for your attention!

References

- [Barker et al., 2015] Barker, J., Marxer, R., Vincent, E., and Watanabe, S. (2015).
 The third 'ohime' speech separation and recognition challenge: Dataset, task and baselines.
 In IEEE 2015 Automatic Speech Recognition and Understanding Workshop (ASRU).
 [Emiya et al., 2011] Eniya, V., Vincent, E., Harlander, N., and
 - Hohmann, V. (2011). Subjective and objective quality assessment of audio source separation.

IEEE Transactions on Audio, Speech and Language Processing, 19(7).

- [Erdogan et al., 2016] Erdogan, H., Hershey, J., Watanabe, S., Mandel, M., and Roux, J. L. (2016). Improved mvdr beamforming using single-channel mask prediction networks. In Interspeech.
- [Heymann et al., 2016] Heymann, J., Drude, L., and Haeb-Umbach, R. (2016). Neural network based spectral mask estimation for acoustic beamforming. In 2016 IEFE ICASSP
- [Higuchi et al., 2016] Higuchi, T., Ito, N., Yoshioka, T., and Nakatani, T. (2016). Robust mvdr beamforming using time-frequency masks for online/offline asr in noise. IEEE International Conference on Acoustics, Speech, and Sianal Processing, 4:5210–5214.

- [Hoshuyama et al., 1999] Hoshuyama, O., Sugiyama, A., and Hirano, A. (1999). A robust adaptive beamformer for microphone arrays with a blocking matrix using constrained adaptive filters. *IEEE Transactions on Signal Processing*, 47(10).
- [Pfeifenberger et al., 2016] Pfeifenberger, L., Zöhrer, M., and Pernkopf, F. (2016). Eigenvector-based speech mask estimation for multi-channel speech enhancement. IEEE Transactions on Speech and Audio Processing, submitted.
- [Shmulik et al., 2012] Shmulik, M. G., Gannot, S., and Cohen, I. (2012). A sparse blocking matrix for multiple constraints GSC beamformer. IEEE International Conference on Acoustics, Speech and Signal Processing.
- [Vary and Martin, 2006] Vary, P. and Martin, R. (2006). Digital Speech Transmission. Wiley, West Sussex.
- [Warsitz and Haeb-Umbach, 2007] Warsitz, E. and Haeb-Umbach, R. (2007). Blind acoustic beamforming based on generalized eigenvalue decomposition. IEEE Transactions on audio, speech, and language processing, 15(5).