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1. Introduction

Hyperspectral imagery

� high spectral resolution, low spatial resolution ⇒ hyperspectral
unmixing

� hyperspectral unmixing

B identifying the reference spectral signatures in the data
(endmembers)

B estimating the endmember relative fraction in each pixel
(abundances).

Unmixing multi-temporal hyperspectral images

� T hyperspectral images acquired over the same area

� varying acquisition conditions + inherent variability of the imaged
scene (natural evolution) ⇒ variability

� increasing number of available images (several large images, sig-
nificant number of images)

B online estimation (sequential analysis)

Figure 1: Spectral variability (P. Gader, A. Zare, R. Close, J. Aitken, G. Tuell,

MUUFL Gulfport Hyperspectral and LiDAR Airborne Data Set, University of Florida, Gainesville,

FL, Tech. Rep. REP-2013-570, Oct. 2013.)

2. Model

Assumptions

. the T images of the sequence share K endmembers (K known)

. the pixels of each image are similarly affected by spectral variabil-
ity (first approximation).

Perturbed linear mixing model (PLMM)

� pixel spectrum = linear combination of corrupted endmembers

� corrupted endmembers = endmembers affected by an additive
time-varying perturbation vector

ynt =

K∑
k=1

aknt

(
mk + dmkt

)
+ bnt (1)

Matrix formulation

Yt = (M + dMt)At + Bt (2)

N number of pixels
L number of spectral bands
K number of endmembers

Yt = [y1t, . . . ,yNt] ∈ RL×N tth hyperspectral image

M = [m1, . . . ,mK ] ∈ RL×K endmember matrix

At = [a1t, . . . , aNt] ∈ RK×N tth abundance matrix

dMt = [dm1t, . . . ,dmKt] ∈ RL×K tth variability matrix

Constraints

� abundance and endmembers (physical considerations)

M � 0L,K, At � 0K,N , A
T
t 1K = 1N , ∀t ∈ {1, . . . , T} (3)

� variability (modeling): small average temporal variability + upper
bound for the instantaneous variability energy∥∥∥∥∥∥ 1

T

T∑
t=1

dMt

∥∥∥∥∥∥
F

≤ κ, ‖dMt‖F ≤ σ, ∀t ∈ {1, . . . , T} (4)

3. Problem formulation

� Two-stage stochastic problem, associated with the empirical risk
minimization

min
M∈M

1

T

T∑
t=1

h(Yt,M) + βΨ(M) (5)

h(Yt,M) = min
(A,dM)∈AK×Dt

f (Yt,M,A,dM) (6)

B f : regularized instantaneous discrepancy measure

B h : cost of the tth optimal decision to update the endmember
matrix M given the data available at time t

B Ψ : endmember regularization.

BM = {M : M � 0L,K}
BAK = {A : A � 0K,N , A

T1K = 1N}
BDt = {dM : ‖dM‖F ≤ σ} ∩ {dM : ‖dM + Et−1‖F ≤ tκ}
BEt =

∑t
i=1 dMi.

� White Gaussian noise assumption

f (Yt,M,A,dM) =
1

2
‖Yt − (M + dM)A‖2F

+ αΦt(A) + γΥt(dM)
(7)

B Φt, Υt : appropriate regularizations

B trade-off between the data fitting term and the penalties Φt(A),
Ψ(M) and Υt(dM) controlled by (α, β, γ).

Abundance and variability regularization
Moderate/smooth changes assumed from one image to another

Φt(A) =
1

2
‖A−At−1‖2F (8)

Υt(dM) =
1

2
‖dM− dMt−1‖2F (9)

Endmember regularization
Constrains the volume of the simplex whose vertices are the end-
member signatures

Ψ(M) =
1

2

K∑
i=1

(
K∑
j=1
j 6=i

‖mi −mj‖22

)
. (10)
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Figure 2: Example of endmembers (in red) and variability (in blue)
obtained when removing the constraint on the averaged variability.

4. An online algorithm

Structure of the online algorithm

� whenever an image Yt is received, local abundance and variabil-
ity estimation by a proximal alternating linearized minimization
(PALM) algorithm

B PALM guaranteed to converge to a critical point of the non-
convex problem (6)

� endmembers updated by proximal gradient descent steps

� possibility to add a forgetting factor ξ ∈]0, 1]

� provided problem (6) exclusively admits locally unique critical
points, Algo. 1 converges to a critical point of Problem (5) as
T → +∞.

Algorithm 1: Online unmixing algorithm.
Data: M0, A0, dM0, α > 0, β > 0, γ > 0, ξ ∈]0, 1]

begin

C0 ← 0K,K ;

D0 ← 0L,K ;

E0 ← 0L,K ;

for t = 1 to T do

a Random selection of an image Yt ;

// Abundance and variability estimation by PALM

b (At,dMt) ∈ arg min
(A,dM)∈AK×Dt

f (Yt,Mt,A,dM);

Ct ← ξCt−1 + AtA
T
t ;

Dt ← ξDt−1 + (dMtAt −Yt)A
T
t ;

Et ← ξEt−1 + dMt ;

// Endmember update

c Mt ← arg min
M∈M

1
t

[
1
2 Tr(MTMCt) + Tr(MTDt)

]
+ βΨ(M)

Result: MT , (At)t=1,...,T , (dMt)t=1,...,T

5. Experiment with synthetic data

� Method evaluated on 15 linear mixtures of size 31 × 30, composed
of 413 bands

� No pure pixel, mixtures corrupted by an additive white Gaussian
noise to ensure SNR = 30 dB

� Abundance and endmembers initialized with VCA/FCLS

� Simulation scenario: Algo. 1 run for 50 cycles through the whole
dataset, PALM and proximal gradient descent stopped after 50
iterations, ξ = 0.99, α = 3.9 × 10−2, β = 5.4 × 10−4, γ =
3.2× 10−4, σ2 = 12.4, κ2 = 1.9.

Figure 3: Abundance maps of m1t [0: black, 1: white] (rows: true
maps, proposed method, VCA/FCLS, SISAL/FCLS).

Figure 4: Abundance maps of m2t [0: black, 1: white] (rows: true
maps, proposed method, VCA/FCLS, SISAL/FCLS).

Figure 5: Abundance maps of m3t [0: black, 1: white] (rows: true
maps, proposed method, VCA/FCLS, SISAL/FCLS).
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Figure 6: Corresponding endmembers [rows: true endmembers (in
red) and variability (in blue), proposed method, VCA, SISAL].

Table 1: Simulation results obtained with synthetic data
(GMSE(A)×10−2, GMSE(dM)×10−4, RE ×10−5).

VCA/FCLS SISAL/FCLS Prop. method

aSAM(M) (°) 8.9792 8.6685 1.9898
GMSE(A) 6.67 3.90 0.47
GMSE(dM) / / 3.07
RE 9.59 9.49 9.63
time (s) 2 2.2 561

6. Conclusion and future work

I Proposition of an online hyperspectral unmixing algorithm ac-
counting for endmember temporal variability

B Consider abrupt endmember changes (common in real data)

B Incorporate spatial variability

B Find automatic rules to adjust the regularization parameters


