

Problem

- Ad-hoc microphone array where the number, the locations and the types of microphones are unknown
- Intended for human consumptions instead of speech recognition

Motivation

Deep learning methods and traditional beamforming methods mutually compensate.

Deep Learning Methods										
Pros	Cons									
Good at removing noise and reverberation	 Produce artifacts Generalize poorly to unseen noise 									
Traditional Beamforming Methods										
Pros	Cons									
Produce natural- sounding speech without artifacts	 Cons Require speaker location and interference characteristic Oversimplified prior knowledge 									

Deep Learning Based Speech Beamforming

Kaizhi Qian¹, Yang Zhang¹, Shiyu Chang², Xuesong Yang¹, Dinei Florencio³, Mark Hasegawa-Johnson¹ ¹University of Illinois at Urbana-Champaign, USA ²IBM Watson Research Center, USA ³Microsoft Research, USA

Enhancement Network

Structure: Non-causal WaveNet

The enhancement network computes the posterior expectation:

 $\mathbb{E}[\boldsymbol{x}|\boldsymbol{y}]$ which removes noise and reverberation.

Experiments

Simulated Test							Real-World Test							
Simulated l'Est							Real-vvoliu lest							
 S1: Seen speaker, Seen noise S2: Seen speaker, Unseen noise S3: Unseen speaker, Seen noise S4: Unseen speaker, Unseen noise GRAB: Glottal Residual Assisted Beamforming 							 N1: Cell phone N2: CombBind N3: Paper shuffle N4: Door slide N5: Footsteps 							
 MVDR: Minimum Variance 						Т	Trained on simulated data							
Distortionless Response						Т	Test on real-world data							
IVA: Independent Vector Analysis							No	ise Type	N1	N2	N3	N4	N5	
Speech Data Seen: VCTK Unseen: TIMIT Noise Data Seen: Hu100 Unseen: FreeSFX						SI (c	NR JB)	DeepBeam GRAB CLOSEST MVDR IVA	20.1 18.9 10.0 10.8 11.7	20.0 17.4 10.0 16.5 9.74	16.9 12.4 10.0 7.72 6.83	19.6 18.5 10.0 14.0 12.4	18.7 17.4 10.0 13.4 15.9	
								DeepBeam	3.83	3.72	3.63	4.09	4.20	
	Er =	-10	0	10	20			GRAB	3.10	3.06	2.93	3.71	3.45	
	DeepBeam S1 DeepBeam S2	18.5 17.1	22.0 20.3	26.5 25.9	28.4 27.4	IVI	102	MVDR	2.74	2.68	3.02 2.28	3.55 2.71	3.50 2.62	
	DeepBeam S3	15.3	19.5	24.1	27.6			IVA	1.73	2.03	1.75	1.78	2.08	
SNR	DeepBeam S4	14.1 2.49	19.0 12.5	23.1	28.5	_								
(ud)	CLOSEST	-5.13	12.5 3.38	21.0 14.9	23.4			Conver	gen	ce /	Ana	lysis	5	
	MVDR	8.41	12.9	22.6	26.7									
	IVA Dece Deces C1	10.3	13.3	16.8	19.2		_						/	
DRR (dB)	DeepBeam S1 DeepBeam S2 DeepBeam S3 DeepBeam S4 CRAB	3.45 7.38 5.60 2.11	8.97 11.9 4.85 6.68 1.70	11.2 12.6 8.43 7.10 3.63	11.5 11.5 9.78 9.31 3.68	2: NNS 20	5 -		#	Channe	28 27 els			
	CLOSEST	8.56	7.32	7.67	8.44	1.	5	3	-4	-5	-6	— 7 <u> </u>	-8	
	MVDR	-2.17	-3.47	-3.42	-4.13		1	2	3	4	5	6	7	
	IVA	-8.92	-8.11	-8.81	-8.99		Iterations							

