
• For each event class, 100,000 positive and 100,000 negative samples
were randomly mixed;

• 162,000 samples were used for training, 18,000 for validating and
20,000 for testing the networks;

• Before being applied to the neural network input, each window is
converted to grayscale, in order to eliminate color dependence;

• Results obtained by the CNN and by the MLP for the four classes of
events are shown in Table 1.

Classification ResultsMLP Algorithm

• The CNN classification accuracy was compared to the one from a
system comprised of a multilayer perceptron preceded by a wavelet-
based feature extractor;

• A 3-level Daubechies 2 (Db2) wavelet was employed, and the mean
and the variance of the wavelet coefficients at each subband within
each level were used as features for the neural network [7];

• Empirically optimal MLP architecture was composed of a 23-element
input layer and a 12-element hidden layer.

Fig. 3. Utilized MLP Architecture

CNN Algorithm 

• The implemented CNN topology consists of two convolutional, two
max-pooling and two fully-connected (FC) layers.

• Adam optimizer [5] was utilized, with learning rate set to 0.001;

• Cross-entropy loss function was utilized;

• Batch size was set to 100;

• Keras API was utilized for the implementation.

Fig. 2. Utilized CNN Architecture
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Event Classes and Data Sets

• Concrete blankets (CB):

• Placed under or over the pipelines;

• Constructed to give support or protect the pipelines from
vibrations;

• Usually identified by a regular brick array.

• Windows containing event samples were extracted from high
resolution images (1280 x 720), in order to train, validate and test the
implemented classification system;

• For ICE, algae and CB samples, 60 x 60 pixel windows were extracted;

• For flanges, 80 x 80 pixel windows were extracted, due to the need to
include their entire geometry in each sample.

Event Classes and Data Sets

• The classifier developed in this work was used to detect four
different event classes:

• Inner coating exposure (ICE):

• Occurs when pipeline surface is damaged;
• Caused by the object impact and by natural circumstances,

such as waves and sea currents;
• Can be described as a texture region containing parallel

stripes, possibly surrounded by homogeneous regions.

• Presence of algae:

• Can be characterized by a variety of shapes, colors and
textures;

• Might hide damages on the pipeline surface, hampering their
detection.

• Flanges:

• Commonly found at pipeline junctions, used for holding
pipeline sections together;

• When seen from a frontal view, these events are outlined by
hexagonal prisms surrounding cylinders;

• When seen from a side view, they are characterized by thinner
rectangles emerging from thicker structures.

• Implementation of a Deep Convolutional Neural Network (CNN) algorithm for 
underwater event classification;  

• Empirical selection of optimal CNN architecture and parameters;

• Comparison to Multilayer Perceptron (MLP) classification  algorithm preceded by 
manually selected wavelet-based feature extraction;

• Collection and usage of large datasets – 200,000 samples for each event class.

Our Contributions

Problem Statement:
• Intensification of subsea oil and gas field exploitation has turned the inspection of 

underwater pipelines into a progressively demanding task;

• Visual inspection by humans is a tedious endeavor, particularly in the cases of long 
inspections, low image quality and search for multiple targets;

• Autonomous Underwater Vehicles (AUVs) are able to automatically detect and track 
underwater pipelines;

• Event classification methods based on machine learning can be used in order to 
automatically inspect the pipelines;

• Classic neural network techniques, such as the MLP, are strongly dependent on 
feature extraction methods, which are often manually carried out;

• Recently, deep learning algorithms have been able to iteratively extract their own 
features from original data.
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• CNN was shown to efficiently classify underwater pipeline events in
comparison with the MLP based on wavelet computed features;

• Inner coating exposure, presence of algae, flanges and concrete
blankets were the event classes considered;

• CNN obtained higher classification accuracy on all four event classes;

• 93.2% classification accuracy was achieved on average, whereas the
perceptron accuracy reached 91.2% on average;

• Classification was preformed without the need of manually selected
feature extraction.


