AN ALTERNATIVE APPROACH FOR AUDITORY ATTENTION TRACKING USING SINGLE-TRIAL EEG

Overview

- > **Goal**: Given two simultaneous speech sources, detect which is being "attended" to and which is being "unattended" to, using the listener's electroencephalography (EEG) data.
- Innovation: Extensions to conventional methods for auditory attention detection are proposed:
 - (1) selective channel deconvolution,
 - (2) maximally correlated multimodal projections,
- (3) balanced correlation decoders.
- > Importance: These are tools aimed to improve the understanding of how humans solve "the cocktail party problem." Applications include, for example, attention driven acoustic beamforming for hearing prostheses.

Paradigm

Experiment: An EEG subject is presented with 36 oneminute duration segments of competing spoken stories, one in each ear, and attends to only one.

Auditory Attention Decoding Goal

- Using training data (35 of 36 segments in a leaveone-out cross validation approach), learn linear filters to reconstruct $s_a(t)$ or $s_u(t)$ from r(t,m).
- Using test data (the remaining segment), predict $\hat{s}_a(t)$ and $\hat{s}_u(t)$ from r(t,m) and compare to ground truth $s_a(t)$ and $s_u(t)$.

Assumed Linear System

neural response

$$r(t,m) = \int_{\tau=0}^{\tau_{max}} (a(\tau,m)s_a(t-\tau) + u(\tau,m)s_u(t-\tau)) + \eta(t,m)$$

attended and unattended channels

Discrete Time Definitions

	$r = \begin{bmatrix} r \\ r \end{bmatrix}$	r(t + t) $r(t + t)$ $r(t + t)$	$\begin{bmatrix} \tau_{max}, 1 \\ \vdots \\ t, 1 \end{bmatrix}$ $\begin{bmatrix} \tau_{max}, 2 \\ \vdots \\ \vdots \\ M \end{bmatrix}$	$\mathbf{s}_a = \begin{bmatrix} s_a \\ s \end{bmatrix}$	t + 2 $S_a(t + S_a(t))$	$\left[\tau_{max} \right]$ + 1) t)
	[a(0,1)	•••	$a(\tau_{max}, 1)$	0	• • •	ך 0
		•••			•••	
Λ —	0	• • •	0	a(0,1)	• • •	$a(\tau_{max}, 1)$
л —	<i>a</i> (0,2)	• • •	$a(\tau_{max}, 2)$	0	• • •	0
		•••			•.	
	L 0	• • •	0	a(0,M)	• • •	$a(\tau_{max}, M)$

Discrete time is assumed for both t and τ . η , s_u , and U are analogous to the equations above, respectively.

Compact model: $r = As_a + Us_u + \eta$

Baseline Method: Stimulus Reconstruction

MMSE: <u>Minimum-Mean Square Error</u> Learn a reconstruction filter, $g(\tau, m)$, to linearly combine spatiotemporal EEG observations using MMSE criteria.

$$\boldsymbol{g}_{a-MMSE} = \underset{\boldsymbol{g}}{\operatorname{argmin}} \mathbb{E}\{|\boldsymbol{g}^T\boldsymbol{r} - \boldsymbol{s}_a(t)|^2\}$$

(1) Selective Channel Deconvolution

MVDR: *Minimum Variance Distortionless Response* Reconstruct "attended" stimulus while minimizing any presence of deconvolved "unattended" stimulus & noise.

$$\boldsymbol{g}_{a-MVDR} = \operatorname{argmin} \mathbb{E}\{|\boldsymbol{g}^{T}(\boldsymbol{U}\boldsymbol{s}_{u} + \boldsymbol{\eta})|^{2}\}$$

s.t.:
$$g^T \mathbf{A} = [0, ..., 0, 1]$$

(2) Multimodal Projections

Multimodal (EEG & Speech) Data Structure

 $\mathbf{s}_{a,c} = \begin{bmatrix} s_a(t + \tau_{max}) \\ \vdots \end{bmatrix} \mathbf{s}_{u,c} = \begin{bmatrix} s_u(t + \tau_{max}) \\ \vdots \end{bmatrix}$ [r(t, 1)] $r_c = |$

CCA: <u>Canonical Correlation Analysis</u> Bypass direct estimation of $\hat{s}(t)$ to produce maximally correlated projections for both modalities, reducing overall number of feature dimensions by using spatial structure of EEG and temporal structure of stimuli.

$$\boldsymbol{g}_{r_{a}-CCA}, \boldsymbol{g}_{s_{a}-CCA} = \operatorname*{argmin}_{\boldsymbol{g}_{r},\boldsymbol{g}_{s}} \mathbb{E}\left\{\left|\boldsymbol{g}_{r}^{T}\boldsymbol{r}_{c}-\boldsymbol{g}_{s}^{T}\boldsymbol{s}_{a,c}\right|^{2}\right\}$$

s.t.:
$$\boldsymbol{g}_{r}^{T}\mathbb{E}\left\{\boldsymbol{r}_{c}\boldsymbol{r}_{c}^{T}\right\}\boldsymbol{g}_{r} = \boldsymbol{g}_{s}^{T}\mathbb{E}\left\{\boldsymbol{s}_{a,c}\boldsymbol{s}_{a,c}^{T}\right\}\boldsymbol{g}_{s} = 1$$

(3) Balanced Correlation Decoders

BMMSE: Balanced MMSE

Optimize the reconstruction filter to the detection statistic by jointly maximizing the correlation & anticorrelation of the reconstruction with the "attended" & "unattended" stimuli, respectively.

$$\boldsymbol{g}_{a-BMMSE} = \underset{\boldsymbol{g}}{\operatorname{argmin}} \mathbb{E}\left\{ \left| \boldsymbol{g}^{T}\boldsymbol{r} - \left(s_{a}(t) - s_{u}(t) \right) \right|^{2} \right\}$$

BCCA: Balanced CCA

Similar to BMMSE, but maximizing canonical correlation and canonical anticorrelation of multimodal projections.

$$g_{r_a-BCCA}, g_{s_a-BCCA} = \underset{g_r,g_s}{\operatorname{argmin}} \mathbb{E}\left\{ \left| g_r^T r_c - g_s^T (s_{a,c} - s_{u,c}) \right|^2 \right\}$$

s.t.:
$$g_s^T \mathbb{E}\left\{ (s_{a,c} - s_{u,c}) (s_{a,c} - s_{u,c})^T \right\} g_s = 1$$
$$g_r^T \mathbb{E}\{r_c r_c^T\} g_r = 1$$

Auditory Attention Detection Statistic

MMSE, MVDR, and BMMSE Decoders

Attended detected if: Unattended detected if:

 $corr\{\boldsymbol{g}_{a}^{T}\boldsymbol{r}, s_{a}(t)\} > corr\{\boldsymbol{g}_{a}^{T}\boldsymbol{r}, s_{u}(t)\}$ $corr\{\boldsymbol{g}_{u}^{T}\boldsymbol{r}, s_{u}(t)\} > corr\{\boldsymbol{g}_{u}^{T}\boldsymbol{r}, s_{a}(t)\}$

CCA and BCCA Decoders

Attended detected if: $corr\{\boldsymbol{g}_{r_a}^T\boldsymbol{r}_c, \boldsymbol{g}_{s_a}^T\boldsymbol{s}_{a,c}\} > corr\{\boldsymbol{g}_{r_a}^T\boldsymbol{r}_c, \boldsymbol{g}_{s_a}^T\boldsymbol{s}_{u,c}\}$ Unattended detected if: $corr\{\boldsymbol{g}_{r_u}^T \boldsymbol{r}_c, \boldsymbol{g}_{s_u}^T \boldsymbol{s}_{u,c}\} > corr\{\boldsymbol{g}_{r_u}^T \boldsymbol{r}_c, \boldsymbol{g}_{s_u}^T \boldsymbol{s}_{a,c}\}$

Bradley Ekin and Les Atlas, Department of Electrical Engineering Majid Mirbagheri and Adrian KC Lee, Institute for Learning & Brain Sciences

W UNIVERSITY of WASHINGTON

Average cross-correlation of reconstructed stimuli with true stimuli shows how BMMSE takes advantage of selectiveattention structures embedded within EEG to maximize correlation separation used in the detection statistic.

	MMSE	MVDR	BMMSE
$\mathbb{E}\left\{corr\{\boldsymbol{g}_{a}^{T}\boldsymbol{r},s_{a}(t)\}-corr\{\boldsymbol{g}_{a}^{T}\boldsymbol{r},s_{u}(t)\}\right\}$	0.0800	0.0740	0.0908
$\mathbb{E}\left\{corr\{\boldsymbol{g}_{u}^{T}\boldsymbol{r}, s_{u}(t)\} - corr\{\boldsymbol{g}_{u}^{T}\boldsymbol{r}, s_{a}(t)\}\right\}$	0.0405	0.0367	0.0908
		CCA	BCCA
$\mathbb{E}\left\{corr\{\boldsymbol{g}_{r_a}^T\boldsymbol{r}_c, \boldsymbol{g}_{s_a}^T\boldsymbol{s}_{a,c}\} - corr\{\boldsymbol{g}_{r_a}^T\boldsymbol{r}_c, \boldsymbol{g}_{s_a}^T\boldsymbol{s}_{a,c}\}\right\} - corr\{\boldsymbol{g}_{r_a}^T\boldsymbol{r}_c, \boldsymbol{g}_{s_a}^T\boldsymbol{s}_{a,c}\}$	$\left\{ s_{u,c} \right\}$	CCA 0.0643	BCCA 0.0967
$\frac{\mathbb{E}\left\{corr\{\boldsymbol{g}_{r_{a}}^{T}\boldsymbol{r}_{c},\boldsymbol{g}_{s_{a}}^{T}\boldsymbol{s}_{a,c}\}-corr\{\boldsymbol{g}_{r_{a}}^{T}\boldsymbol{r}_{c},\boldsymbol{g}_{s_{a}}^{T}\boldsymbol{s}_{a,c}\}-corr\{\boldsymbol{g}_{r_{u}}^{T}\boldsymbol{r}_{c},\boldsymbol{g}_{s_{a}}^{T}\boldsymbol{s}_{u,c}\}-corr\{\boldsymbol{g}_{r_{u}}^{T}\boldsymbol{r}_{c},\boldsymbol{g}_{s_{a}}^{T}\boldsymbol{s}_{u,c}\}-corr\{\boldsymbol{g}_{r_{u}}^{T}\boldsymbol{r}_{c},\boldsymbol{g}_{s_{a}}^{T}\boldsymbol{s}_{u,c}\}-corr\{\boldsymbol{g}_{r_{u}}^{T}\boldsymbol{r}_{c},\boldsymbol{g}_{s_{a}}^{T}\boldsymbol{s}_{u,c}\}-corr\{\boldsymbol{g}_{r_{u}}^{T}\boldsymbol{r}_{c},\boldsymbol{g}_{s_{a}}^{T}\boldsymbol{s}_{u,c}\}-corr\{\boldsymbol{g}_{r_{u}}^{T}\boldsymbol{r}_{c},\boldsymbol{g}_{s_{a}}^{T}\boldsymbol{s}_{u,c}\}-corr\{\boldsymbol{g}_{r_{u}}^{T}\boldsymbol{r}_{c},\boldsymbol{g}_{s_{a}}^{T}\boldsymbol{s}_{u,c}\}-corr\{\boldsymbol{g}_{r_{u}}^{T}\boldsymbol{r}_{c},\boldsymbol{g}_{s_{a}}^{T}\boldsymbol{s}_{u,c}\}-corr\{\boldsymbol{g}_{r_{u}}^{T}\boldsymbol{r}_{c},\boldsymbol{g}_{s_{a}}^{T}\boldsymbol{s}_{u,c}\}-corr\{\boldsymbol{g}_{r_{u}}^{T}\boldsymbol{r}_{c},\boldsymbol{g}_{s_{a}}^{T}\boldsymbol{s}_{u,c}\}-corr\{\boldsymbol{g}_{r_{u}}^{T}\boldsymbol{r}_{c},\boldsymbol{g}_{s_{a}}^{T}\boldsymbol{s}_{u,c}\}-corr\{\boldsymbol{g}_{r_{u}}^{T}\boldsymbol{r}_{c},\boldsymbol{g}_{s_{a}}^{T}\boldsymbol{s}_{u,c}\}-corr\{\boldsymbol{g}_{r_{u}}^{T}\boldsymbol{r}_{c},\boldsymbol{g}_{s_{a}}^{T}\boldsymbol{s}_{u,c}\}-corr\{\boldsymbol{g}_{r_{u}}^{T}\boldsymbol{r}_{c},\boldsymbol{g}_{s_{a}}^{T}\boldsymbol{s}_{u,c}\}-corr\{\boldsymbol{g}_{r_{u}}^{T}\boldsymbol{r}_{c},\boldsymbol{g}_{s_{a}}^{T}\boldsymbol{s}_{u,c}\}-corr\{\boldsymbol{g}_{r_{u}}^{T}\boldsymbol{r}_{c},\boldsymbol{g}_{s_{a}}^{T}\boldsymbol{s}_{u,c}\}-corr\{\boldsymbol{g}_{r_{u}}^{T}\boldsymbol{r}_{c},\boldsymbol{g}_{s_{a}}^{T}\boldsymbol{s}_{u,c}\}-corr\{\boldsymbol{g}_{r_{u}}^{T}\boldsymbol{r}_{c},\boldsymbol{g}_{s_{a}}^{T}\boldsymbol{s}_{u,c}\}-corr\{\boldsymbol{g}_{r_{u}}^{T}\boldsymbol{r}_{c},\boldsymbol{g}_{s_{a}}^{T}\boldsymbol{s}_{u,c}\}-corr\{\boldsymbol{g}_{r_{u}}^{T}\boldsymbol{r}_{c},\boldsymbol{g}_{s_{a}}^{T}\boldsymbol{s}_{u,c}\}-corr\{\boldsymbol{g}_{r_{u}}^{T}\boldsymbol{r}_{c},\boldsymbol{g}_{s_{a}}^{T}\boldsymbol{s}_{u,c}\}-corr\{\boldsymbol{g}_{r_{u}}^{T}\boldsymbol{r}_{c},\boldsymbol{g}_{s_{a}}^{T}\boldsymbol{s}_{u,c}\}-corr\{\boldsymbol{g}_{r_{u}}^{T}\boldsymbol{r}_{c},\boldsymbol{g}_{s_{a}}^{T}\boldsymbol{s}_{u,c}\}-corr\{\boldsymbol{g}_{r_{u}}^{T}\boldsymbol{r}_{c},\boldsymbol{g}_{s_{a}}^{T}\boldsymbol{s}_{u,c}\}-corr\{\boldsymbol{g}_{r_{u}}^{T}\boldsymbol{r}_{c},\boldsymbol{g}_{s_{a}}^{T}\boldsymbol{s}_{u,c}\}-corr\{\boldsymbol{g}_{r_{u}}^{T}\boldsymbol{r}_{c},\boldsymbol{g}_{s_{a}}^{T}\boldsymbol{s}_{u,c}\}-corr\{\boldsymbol{g}_{r_{u}}^{T}\boldsymbol{r}_{c},\boldsymbol{g}_{s_{a}}^{T}\boldsymbol{s}_{u,c}\}-corr\{\boldsymbol{g}_{r_{u}}^{T}\boldsymbol{r}_{c},\boldsymbol{g}_{s_{a}}^{T}\boldsymbol{s}_{u,c}\}-corr\{\boldsymbol{g}_{r_{u}}^{T}\boldsymbol{r}_{c},\boldsymbol{g}_{s_{a}}^{T}\boldsymbol{s}_{u,c}\}-corr\{\boldsymbol{g}_{r_{u}}^{T}\boldsymbol{r}_{c},\boldsymbol{g}_{s_{a}}^{T}\boldsymbol{s}_{u,c}\}-corr\{\boldsymbol{g}_{r_{u}}^{T}\boldsymbol{r}_{c},\boldsymbol{g}_{s_{a}}^{T}\boldsymbol{s}_{u,c}\}-corr\{\boldsymbol{g}_{r_{u}}^{T}\boldsymbol{r}_{c},\boldsymbol{g}_{s_{a}}^{T}\boldsymbol{s}_{u,c}\}-corr\{\boldsymbol{g}_{r_{u}}^{T}\boldsymbol{r}_{c},\boldsymbol{g}_{s_{a}}^{T}\boldsymbol{s}_{u,c}\}-corr\{\boldsymbol$	$\left\{ s_{u,c} \right\} $ $\left\{ s_{u,c} \right\} $	CCA 0.0643 0.0336	BCCA 0.0967 0.0967

Mean difference in detection statistics for decoder models.

Mean detection accuracies for each decoding method. Error bars based on a binominal distribution (p = 0.5, $n = 36, \alpha = 0.05$). Methods evaluated on one subject.

Summary

- \succ We developed 4 auditory attention decoders, each an extension to the traditional MMSE optimization criteria.
- See paper for details on how utilizing channel estimations via **MVDR** improves decoding accuracy.
- > Best accuracy for attention detection occurs using **BCCA** by balancing canonical projections using both stimuli.

Funding from Army Research Office grant numbers W911NF-12-1-02770 and W911NF-15-1-0450, and the Office of Naval Research Young Investigator Program award N00014-15-1-2124.