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0= HXrec — Xorig‘
where Xpee and Xorig are the normalized reconstructed signal and the normalized original signal, respectively.
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B Experimentally a Gammatone (GT) filter bank 1s attained
whose functions are defined by

e Experiments show that these models represent good
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the quality near to subjective quality measures, quality of the reconstructed speech signals 1s measured by using

tem.
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