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Tunable Diode Laser Absorption Tomography (TDLAT)

e What is TDLAT?

— Use light to measure density and temperature of a gas
— Measures absorption spectral lines along a small number of paths

— ~10 paths each with ~4 spectral lines = 40 measurements

* Why is TDLAT useful?
— Hypersonic flow measurements, and many other applications
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Why TDLAT is Difficult

Why TDLAT is Difficult pr—
— Nonlinear forward model L J u
— Highly underdetermined e T

(molecules/cm?) (kelvin:

* 40 measurements (=10 projections x 4 spectral lines)
* 3194 unknowns (~= 45x45 grid x 2 unknowns)

* Our solution
— Use Bayesian inversion (MBIR)

— Formulate a non-Gaussian prior model
— Eigenimage decomposition
— Gaussian mixture distribution

— Computational fluid dynamics (CFD) training data

— Multigrid optimization for reconstruction



Reconstruction Framework

* Model-based iterative reconstruction (MBIR)

X = argmax(logp(y|x) + logp(x))

— y : vector of absorbance data for each path and line spectrum
— x : vector of unknown molecular concentration and temperature
— p(¥x) : measurement model; models measurement procedure

— p(x): prior model; joint model for molecular concentration and temperature
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Measurement Model: p(y|x)

. . Gas flow cross section
* Nonlinear measurement model given as
Y. =A. +noise Laser
J J source
f N (l") S (T (l")) di" Discretized ROI (exaggerated)
where j" path
: N, T,
N(r) : Molar concentration of gas

T (r) : Temperature of gas

/\

S(-) : Nonlinear function
S(T)

* Log likelihood of absorbance data y given unknown x :

log p (y| x) | | + constants Temperature in Kelvin
where
f : non-linear function defined by light absorption physics f \

H : forward projector matrix defined by projection layout

o’ : noise variance
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Non-Gaussian Prior Model based on CFD Training Data

* Train using CFD training data
— CFD simulations are VERY computationally expensive

— Very little training data

* Better/accurate prior model trained using sparse training set

— Non-Gaussian prior model
* Eigenimage for dimensionality reduction
* Gaussian mixture model

* Train using EM algorithm
* MAP estimation

— Quadratic surrogate => Majorization minimization



Gaussian Mixture Model as Prior

e Gaussian mixture model (GMM): A flexible non-Gaussian distribution
— Parameter estimation of GMM is difficult
- Use a lower dimensional vector z to express unknown x
x=Fkz+ U

— Gaussian mixture distribution of z is given as

~

Tt - prior probability of m” mixture component

- o
i, - mean of m" mixture component

R..- covariance of m"” mixture component

~

e Model mixture covariance matrices R as diagonal matrices



Gaussian Mixture Model Parameter Estimation

Use EM Algorithm to estimate the parameters
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The trained model captures non-Gaussian characteristics

Surface plot of Gaussian mixture distribution
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Computing the MAP Estimate

e Minimize MAP cost function

1
c(z)=
(2) Py

k 1

g[i p/~2 i © { %(Z_ﬂk)t Rkl(z‘ﬂk)}]

Problem: very complicated to minimize

* Solution: Use majorization minimization with quadratic surrogate function.
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Easy to minimize!

¢(z)=

Question: How do we find a quadratic surrogate?



Lemma: Surrogate Cost Formulation

* Surro gate MAP cost obtained by using a quadratic approximation for prior
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Multigrid Optimization

* Why multigrid? 1 |
—Robust to local minimum in non-convex optimization To0a5 o [ A i
TR v PR g
—Faster convergence N Fa T
* How does it work? | I
—Based on eigenimages S ¥
—Goes from largest eigen-values to smallest kel A
eigenimage 1 eigenimage 2 eigenimage 40 eigenimage 41

[llustration showing eigenimages
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RESULTS



Reconstruction Experiments

Prior models compared
— Proper Orthogonal Decomposition (POD)*
— Gaussian markov random field prior

— Gaussian mixture model (GMM) prior <= our proposed method
All results use 42 round-robin cross-validation

Simulated data with average SNR = 30dB

Normalized RMSE error: -
%E (Xi - Yz )2
NRMSE(X,Y) = 4| —=!
(X.1) max (Y;) - min(X,)

* “Hyperspectral tomography based on proper orthogonal decomposition as motivated by imaging diagnostics of unsteady reactive flows” by
W. Cai and Lin Ma.



Reconstruction -1

Ground truth GMRF Prior GMM Prior
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Reconstruction -2

Ground truth . A GMRF " G
Molecular : : j i
Concentration h ‘ , h ‘ 8 o i ‘ .
NRMSE 8.39% 9.81% 6.24%
Temperature . .
NRMSE 11.17% 3.82 %




Reconstruction -3
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Reconstruction -4
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Average Results of All Reconstruction

Experiments
% NRMSE (N) | % NRMSE (T) | % Average NRMSE
POD 9.89 12.13 11.01
GMRF 10.00 13.50 11.75
GMM 6.14 5.14 5.64

Average NRMSE for all 42 reconstruction experiments




Plot of NRMSE vs. Number of
Mixture Components
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Convergence Experiments

* First run algorithm to achieve “fully converged result”

* Run reconstructions again; compute

— MAP cost and

— NRMSE between current and converged result
* Total 42 experiments; for each reconstruction

— The prior model in the reconstructions is Gaussian mixture model

- p=138



Comparison of Convergence

Plots averaged over 42 experiments; also representative of typical case
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CPU Time and Speed up

NRMSE 1% 0.5% 0.1% 0.01%
Average CPU time (sec)

(Fixefz’i_gﬂ 3 algorithim) 4.66 8.66 17.48 31.07
Average CPU time (sec)

(Muﬁigﬁ 4 algorithan) 1.72 3.39 8.87 16.57

Time take to achieve specified NRMSE between current and converged result

(Experiments done on Intel core 17 with 32GB of memory using MATLAB)
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Summary

Proposed a novel MBIR framework for TDLAT

— Nonlinear forward model

— Based on physics of line-spectrum light absorption

Proposed non-Gaussian GMM prior to model
— Non-homogeneous characteristics of images
— Non-Gaussian characteristics of images
MAP estimation
— Majorization using surrogate function
— Multigrid optimization
Results
— Reduced NRMSE

— Fast convergence/reduced computation
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