
Gaussian Mixture Prior Models for 
Imaging of Flow Cross Sections from 
Sparse Hyperspectral Measurements  

Zeeshan Nadir1 
Michael S. Brown2 

Mary L. Comer1 

Charles A. Bouman1 

1 School of Electrical and Computer Engineering, Purdue University, West Lafayette, IN, 47907 
2 Air Force Research Laboratory, Wright-Patterson AFB, OH 45433 
 

3rd IEEE GlobalSIP Conference, Orlando, Florida, USA, Dec 14-16 2015 



Tunable Diode Laser Absorption Tomography (TDLAT) 

•  What is TDLAT? 
–  Use light to measure density and temperature of a gas 

–  Measures absorption spectral lines along a small number of paths 

–  ~10 paths each with ~4 spectral lines = 40 measurements 

•  Why is TDLAT useful? 
–  Hypersonic flow measurements, and many other applications 

Test fixture	


Illustration of TDLAT measurement for a 
single projection path	




Why TDLAT is Difficult 
•  Why TDLAT is Difficult 
–  Nonlinear forward model 
–  Highly underdetermined 

•  40 measurements (=10 projections x 4 spectral lines) 
•  3194 unknowns (~= 45×45 grid x 2 unknowns) 

•  Our solution 
–  Use Bayesian inversion (MBIR) 
–  Formulate a non-Gaussian prior model 

–  Eigenimage decomposition 
–  Gaussian mixture distribution 
–  Computational fluid dynamics (CFD) training data 

–  Multigrid optimization for reconstruction 
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Reconstruction Framework 
•  Model-based iterative reconstruction (MBIR) 

–  y : vector of absorbance data for each path and line spectrum 
–  x : vector of unknown molecular concentration and temperature 
–           : measurement model; models measurement procedure 
–        : prior model; joint model for molecular concentration and temperature 

  

x̂ = argmax
x

log p y x( )+ log p x( )( )

p y x( )
p x( )

Schematic of projection paths	


Molecular concentration training images  (molecules/cm3) 

Temperature training images (kelvins) 

Example of CFD images used for training the prior model	




S(T)	


Temperature in Kelvin	


Measurement Model: p(y|x) 

Aj = N r( )S T r( )( )
jth  path
∫  dr

   where
    f  :  non-linear function defined by light absorption physics
   H  :  forward projector matrix defined by projection layout
   σ 2 :  noise variance

where
     N (r) : Molar concentration of gas
     T (r) : Temperature of gas
    S(⋅) : Nonlinear function

Yj = Aj + noise

•  Nonlinear measurement model given as	
 Gas flow cross section 

dr
Yj

Ni, Ti	


Discretized ROI (exaggerated)	


Laser 
source	


•  Log likelihood of absorbance data y given unknown x :	


log p y x( ) = −1
2σ 2  y − Hf x( )  

2

2
+ constants

Schematic of projection path layout	




Non-Gaussian Prior Model based on CFD Training Data 

•  Train using CFD training data 
–  CFD simulations are VERY computationally expensive 

–  Very little training data 

•  Better/accurate prior model trained using sparse training set 
–  Non-Gaussian prior model 

•  Eigenimage for dimensionality reduction 

•  Gaussian mixture model 

•  Train using EM algorithm 

•  MAP estimation 
–  Quadratic surrogate => Majorization minimization 

 



Gaussian Mixture Model as Prior 
•  Gaussian mixture model (GMM): A flexible non-Gaussian distribution	


-  Parameter estimation of GMM is difficult	

-  Use a lower dimensional vector    to express unknown x	


-  Gaussian mixture distribution of z is given as	


	

	


•  Model mixture covariance matrices         as diagonal matrices  	


x = Ez + µ
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where

      π! m  - prior probability of mth  mixture component

      µ!m - mean of mth  mixture component

      R!m - covariance of mth  mixture component
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Gaussian Mixture Model Parameter Estimation 

         

•  Use EM Algorithm to estimate the parameters	


CFD training phantoms	


Molecular concentration	
 Temperature	


Surface plot of Gaussian mixture distribution	
 Contour plot of Gaussian mixture distribution	


Scatter plot of training data	


•  The trained model captures non-Gaussian characteristics	




Computing the MAP Estimate 

•  Minimize MAP cost function	


•  Solution: Use majorization minimization with quadratic surrogate function.	
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Problem: very complicated to minimize 

Easy to minimize! 

Question: How do we find a quadratic surrogate? 



Lemma: Surrogate Cost Formulation 
•  Surrogate MAP cost obtained by using a quadratic approximation for prior	
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Example of surrogate cost for prior model term	  
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Multigrid Optimization 
• Why multigrid? 

– Robust to local minimum in non-convex optimization 
– Faster convergence 

• How does it work? 
– Based on eigenimages 
– Goes from largest eigen-values to smallest 

 !

 !

eigenimage 1	
 eigenimage 2	
 eigenimage 40	
 eigenimage 41	


Illustration showing eigenimages	


Coordinate update pattern in multigrid algorithm;  ρ =1.8



EXPERIMENTAL 
RESULTS 



Reconstruction Experiments 

•  Prior models compared 

–  Proper Orthogonal Decomposition (POD)* 

–  Gaussian markov random field prior  

–  Gaussian mixture model (GMM) prior <= our proposed method 

•  All results use 42 round-robin cross-validation 

•  Simulated data with average SNR = 30dB 

•  Normalized RMSE error: 

* “Hyperspectral tomography based on proper orthogonal decomposition as motivated by imaging diagnostics of unsteady reactive flows” by 	

     W. Cai and Lin Ma.	
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Reconstruction -1 

GMRF Prior	
POD	
 GMM Prior	
Ground truth	


10.02%	


15.20%	


9.85%	


16.22%	


3.83 %	


5.44 %	
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NRMSE 

NRMSE 



Reconstruction -2 

GMRF	
POD	
 GMM	
Ground truth	


8.39%	


6.92%	


9.81%	


11.17%	


6.24%	


3.82 %	
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Reconstruction -3 

GMRF	
POD	
 GMM	
Ground truth	


5.30%	


6.94%	


7.16%	


10.69%	


3.59%	


 4.39%	
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Reconstruction -4 

GMRF	
POD	
 GMM	
Ground truth	


5.61%	


12.14%	


8.83%	


14.78%	


3.40%	


4.81%	
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Average Results of All Reconstruction 
Experiments 

Average NRMSE for all 42 reconstruction experiments	


% NRMSE (N)	
 % NRMSE (T)	
 % Average NRMSE	

POD	
 9.89	
 12.13	
 11.01	


GMRF	
 10.00	
 13.50	
 11.75	

GMM	
 6.14	
 5.14	
 5.64	




Plot of NRMSE vs. Number of 
Mixture Components 

NRMSE plotted against number of mixture components	




Convergence Experiments 
•  First run algorithm to achieve “fully converged result” 

•  Run reconstructions again; compute 

–   MAP cost and 

–  NRMSE between current and converged result 

•  Total 42 experiments; for each reconstruction 

–  The prior model in the reconstructions is Gaussian mixture model 
–    ρ = 1.8



Comparison of Convergence 
•  Plots averaged over 42 experiments; also representative of typical case	


MAP Cost	


NRMSE between current converged N and current N	
 NRMSE between current converged T and current T	




CPU Time and Speed up 
NRMSE	
 1%	
 0.5%	
 0.1%	
 0.01%	


Average CPU time (sec)	

(Fixed-grid algorithm)	
 4.66	
 8.66	
 17.48	
 31.07	


Average CPU time (sec)	

(Multigrid algorithm)	


	


1.72	
 3.39	
 8.87	
 16.57	


Time take to achieve specified NRMSE between current and converged result	

 (Experiments done on Intel core i7 with 32GB of memory using MATLAB)	


Average relative benefit of multigrid 
algorithm in computational time	
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(a) (b)
Fig. 17. Illustration of separate Gaussian mixture models for concentration
and temperature CFD phantoms. (a) shows the 2D scatter plot concentration
phantoms along with the cluster means. (b) shows the 2D scatter plot
temperature phantoms along with the cluster means. Red line segments
represent the direction of eigenvectors. Lengths of the red line segments
correspond to the standard deviation of eigenimage variables belonging to
the particular cluster.

TABLE II
AVERAGE NRMSE FOR ALL 42 RECONSTRUCTION EXPERIMENTS. NRMSE(N) IS

AVERAGE NRMSE IN MOLECULAR DENSITY. NRMSE(T) IS AVERAGE NRMSE IN

TEMPERATURE. AVG. NRMSE IS AVERAGE OF THE NRMSE IN MOLECULAR

DENSITY AND TEMPERATURE.

% NRMSE (N) % NRMSE (T) % Avg. NRMSE
POD 9.89 12.13 11.01

GMRF 10.00 13.50 11.75
GM 6.15 5.51 5.83

GMM 6.14 5.14 5.64

prior models that express the data well. Gaussian mixture
prior provides a greater benefit in terms of NRMSE for
temperature reconstructions when compared with temperature
reconstructions of Gaussian prior. The difference in NRMSE
of concentration reconstructions of Gaussian mixture prior and
Gaussian prior is not that much. We believe that this might
be due to better clustering of the temperature phantoms as
compared to concentration phantoms. This can be seen by
taking a look at Fig. 17, where, separate Gaussian mixture
models have been trained for concentration and temperature. It
is clear that temperature phantoms are grouped in largely sep-
arate clusters, whereas, concentration phantoms are grouped
in somewhat overlapping clusters. Therefore it is likely that
Gaussian mixture prior offers a greater benefit in temperature
reconstructions as compared to concentration reconstructions.

We also studied the effect of model order M in the GMM
prior i.e., the number of clusters. Increasing the number of
clusters increases the parameters to be estimated and hence
it requires more data. With 41 CFD phantoms available
for training, we found out that M = 5 clusters gave us
the best results. Fig. 18 shows the average NRMSE of 42
reconstructions as a function of number of clusters.

B. Convergence Results
We compared the convergence speed of multigrid optimiza-

tion algorithm with fixed-grid optimization algorithm by run-
ning 42 reconstruction experiments using a Gaussian mixture
prior model. The initial condition for these reconstructions
are the end result of reconstructions with Gaussian prior
model. For each reconstruction, we first run the algorithm
for a sufficiently large number of iterations to achieve “fully
converged” result. We then run the same reconstructions again
and at each coordinate update we compute the MAP cost and
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Fig. 18. Plot % average NRMSE vs. no. of clusters in Gaussian mixture prior
model. Average NRMSE is the average of NRMSE in molecular density and
temperature reconstructions.

the NRMSE between the current state of the unknown and
the converged state. Both multigrid and fixed-grid algorithms
use eigenimage basis. In case of multigrid algorithm, the
coarsest grid has 1 eigenimage coefficient, the finest grid has
40 eigenimage coefficents and ⇢ = 1.8.

Fig. 19(a) shows a comparison of cost plots averaged over
42 reconstructions. It is evident that cost drops much more
quickly with multigrid algorithm. This makes sense since
multigrid algorithm spends more computation on eigenimage
coefficients which are expected to have more variation. It pro-
ceeds onto eigenimages that have more spatial variation only
after optimizing spatially smoother eigenimage coefficients
first.

In Fig. 19(b) and Fig. 19(c) we present % NRMSE plots
between current and converged state of the unknown concen-
tration and temperature fields. It is clear from the figures that
the multigrid algorithm converges much faster than fixed-grid
algorithm. Typically for these reconstructions, a 1% NRMSE
criterion is enough to guarantee sufficient convergence. In
Fig. 20, we observe the speed up as function of % NRMSE
between current and converged result. We define the speed up
as

speed up (r) =

Fixed-grid iterations to achieve r % NRMSE
Multigrid iterations to achieve r % NRMSE

.

(58)

Hence speed up at r % NRMSE would be the relative benefit
one gets by using multigrid algorithm as opposed to fixed-grid
algorithm to achieve an NRMSE of r % in both N and T
fields. It is clear from Fig. 20 that multigrid algorithm is almost
uniformly better than fixed-grid algorithm. The speed up seems
to converge at about a factor of 1.8 for very conservative
criterion of NRMSE whereas for a more practical convergence
criterion i.e., 1 % NRMSE, there is a speed up factor of 2.7.

VII. CONCLUSIONS

We have proposed a novel framework that we have named
TDLAT-MBIR for reconstruction of TDLAT dataset. We first
derived a forward model based upon theoretical principles
of light absorbance through gaseous media. Next, we pro-
posed a non-homogeneous, multimodal prior model for images
along with a procedure for training the parameters of the
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(a). MAP cost plot (b). %NRMSE between current and converged value of N (c). %NRMSE between current and converged value of T

Fig. 19. Comparison of convergence speed of fixed-grid and multigrid algorithm. All three plots represent an average from 42 reconstructions. These plots are representative of
the typical behavior. It can be seen from all three plots that multigrid algorithm converges faster than fixed-grid algorithm.
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Fig. 20. Average relative benefit in computational time when using the
multigrid algorithm as opposed to fixed-grid algorithm. For 1 % NRMSE,
multigrid algorithm would require about 2 seconds where fixed-grid algorithm
would require about 5.38 seconds on a computer with an Intel core i7
processor and 32 GB memory.

model. Finally we proposed a multigrid optimization algo-
rithm in eigenimage basis functions along with a robust 1-
D optimization strategy. Reconstruction results using CFD
simulated phantoms indicate that the suggested GMM prior
model improves the quality of reconstructions and multigrid
optimization algorithm improves convergence.

APPENDIX A
ESTIMATION OF SPLINE COEFFICIENTS FOR Q FUNCTION

In order to better represent the real partition function which
is smooth in nature, we want a polynomial approximation
for the partition function Q(T ), which is twice differentiable.
This is also important for optimization algorithms which are
based upon derivatives e.g., algorithms like gradient descent,
conjugate gradient, iterative coordinate descent etc. Typically
the partition function is approximated by a cubic spline
interpolation, which is estimated using the experimentally cal-
culated values of Q function that are assumed to be accurate.

The original cubic spline polynomial coefficients, that were
made available to us to approximate the partition function were
such that the resulting fit was not twice differentiable. We
provide a table of cubic spline polynomial coefficients that
were provided to us in the beginning. To understand the role of

each of the coefficient in the tables provided below, we provide
the representation of partition function in a temperature range
from T0 to T1,

Q(T ) = a+ b T + c T 2
+ d T 3 T

o

 T < T1. (59)

It can be verified that using the coefficients in Table III,
one doesn’t get a twice differentiable curve for the parti-
tion function i.e., the resulting first and second derivatives
are discontinuous at temperature values where a change of
polynomial occurs. In order to ensure that the approximated
partition function is twice differentiable, we corrected the
value of the polynomial coefficients given in the table above
and also minimized the overall error using the tabulated values
of partition function made available by R. R. Gamache [59]
on his website. Following were the steps that were taken to
ensure that the resulting cubic spline polynomial coefficients
give a twice differentiable curve.

1) We ensure the continuity of second derivative by adjust-
ing the value of coefficient c such that on points where
the change of polynomial occurs, the difference in the
values of Q00

(T ) is 0.
2) We adjust the values of coefficient b such that on points

where the change of polynomial occurs, the difference
in the values of Q0

(T ) is 0. This ensures the continuity
of the first derivative of Q function.

3) We adjust the values of coefficient a such that on
the points where change of polynomial occurs, the
difference in the values of Q(T ) is 0. This gives us
a continuous Q function.

Above procedure gives us a continuous, twice differentiable
Q function. Finally to reduce the overall error between calcu-
lated numerical values of Q function and the predicted values
of Q function, we fit a quadratic function to the error and
adjust the coefficients a, b and c to remove the error. The error
for our final cubic spline fit was below 2% for a range of
temperature values given by 300 kelvins to 3010 kelvins as
shown in Fig. 21. The final cubic spline coefficients that give
a continuous, twice differentiable Q function are provided in
Table IV.

t	




Summary 
•  Proposed a novel MBIR framework for TDLAT 

–  Nonlinear forward model 

–  Based on physics of line-spectrum light absorption 

•  Proposed non-Gaussian GMM prior to model 
–  Non-homogeneous characteristics of images 

–  Non-Gaussian characteristics of images 

•  MAP estimation 
–  Majorization using surrogate function 
–  Multigrid optimization 

•  Results 
–  Reduced NRMSE 
–  Fast convergence/reduced computation 
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