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Background: Wireless Sensor Network Monitoring 

• Measuring & monitoring WSN applications 

• Resource-limited sensors 

 Wireless access is energy-consuming  

 Limited computation power  simple encoding needed 

• Source compression for minimizing the information rate 

• Real-world WSN signals sparse, e.g., in surveillance, fault 

detection and spectrum sensing applications 

• Signals typically continuous-valued 

• Quantization inevitable for finite-rate communications 
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Background: Design Approaches 

• Compressed sensing (CS) 

 Retrieve a high-dimensional sparse vector from few linear 

measurements 

• Vector quantization (VQ) 

 Block source coding (cf. Shannon’s source coding theory) 

• Channel-optimized VQ (COVQ) 

 Joint source-channel coding (JSCC)  

 Source-channel separation theorem: infinitely long block lengths 

 A practical method with constrained delay and complexity 
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System Model (1/2) 

• Noisy CS measurements [M] of K-sparse signal [N]: 

• Pre-quantization of measurement space into V cells 

    with rate                   and indices      

 

• Encoder is an index mapping                  ,                    

with rate                 ,            , and indices  

 

 

 

• Discrete memoryless channel is a 

    mapping           with 

• Decoder is a mapping                  with 

    codevectors                         , i.e.,  
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 : encoding index of v:th cell  

 : cell indices assigned to i:th encoding index   

Fixed measurement matrix 
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System Model (2/2) 

• Illustration of assignment of pre-quantization cells into 

encoding indices with            and   
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Problem Formulation 

• Minimization of the end-to-end MSE distortion 

 1) Quantization error 2) Channel error 3) Reconstruction error  

• Additional constraint for PQ, i.e., VQ with codebook                          

and codepoints             : 

 Nearest-neighbor coding to enforce controlled encoding complexity  

• Marginalize over the PQ, E and D indices: 

 

 

 

• Joint optimization problem: 

 

 

 

    with optimization variables               ,      , and 
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Markov property 
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Optimization Approach  

• The integer constraint makes the problem intractable 

• Split the optimization into two separate steps: 

1. Optimization of PQ via  

2. Optimization of E-D pair via     and  

• Alternating optimization in the spirit of the iterative Lloyd 

algorithm used in both steps 

 Optimize partition for fixed codevectors 

 Optimize codevectors for fixed partition 
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Pre-Quantization Optimization  

• A reasonable choice is to minimize the MSE distortion 

induced by the measurement space discretization: 

 

• Due to the MSE distortion criterion, the alternating 

optimization for PQ results in the traditional VQ with 

 Optimal partition (nearest-neighbor condition): 

 

 

 Optimal codepoints (centroid condition): 
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VQ training via the 

iterative Lloyd algorithm 

by successively applying 

the necessary optimality 

conditions 
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Joint Encoder-Decoder Optimization (1/3)  

• Optimize E-D for a fixed PQ, i.e., fixed PQ cells 

• Minimum mean-square error (MMSE) estimator of the source 

given noisy CS measurements: 

 Closed-form solution available 

 Exponential complexity proportional to the number of supports 

• Alternating optimization of E and D 

 Practical training via the principles of the iterative Lloyd algorithm 
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Joint Encoder-Decoder Optimization (2/3)  

• The optimization of E separates into V subproblems, namely 

 

 

 

 

• Optimal encoder index: 

 

 

 

 

 Weighted nearest-neighbor condition 
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Distortion when v:th cell is 

assigned to i:th encoding index 
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Joint Encoder-Decoder Optimization (3/3)  

• The MSE marginalized over channel output indices as 

                                   results in    

• The optimal codevector: 

 

 

 

 

 

 

 A weighted centroid condition 
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Algorithm Implementation 

• Encoding of each measurement vector requires  

1. Table look-ups (V) at PQ:                                                 using 

codebook  

2. A simple reference at E:                   using  

• Tolerable encoding complexity via adjusting the PQ rate 

 Higher PQ rate refines the approximation of measurement 

space  smaller end-to-end distortion 

 Lower PQ rate decreases the encoding complexity  

• Decoding of each received index j requires 

  A simple reference                        using  
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Numerical Results (1/2) 
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VQ: CS-blind & Channel-blind 

COVQ: CS-blind & Channel-aware 

COVQ-PQ-CS (Proposed): CS-aware & 

Channel-aware with controlled encoding 

complexity 

COVQ-CS: CS-aware & 

channel-aware with ”full” 

encoding complexity  
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Numerical Results (2/2) 
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VQ: CS-blind & Channel-blind 

COVQ: CS-blind & Channel-aware 

COVQ-PQ-CS (Proposed): CS-aware & 

Channel-aware with controlled encoding 

complexity 

COVQ-CS: CS-aware & 

channel-aware with ”full” 

encoding complexity  
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Conclusions 

• We proposed a novel finite-rate communication 

method for efficient and robust acquisition of 

sparse sources over noisy channels with 

controlled encoding complexity   

• The results illustrated that the sparse signal 

structure and the existence of channel noise, 

respectively, necessitates 

 CS-awareness 

 Channel-awareness 
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Thank You For Your Interest! 

Questions? 
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