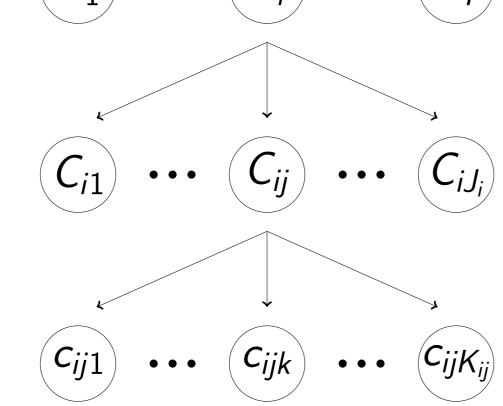


Input sound
$$\mathbf{x} = (x[1], ..., x[P])$$
PreprocessingSTFT: $\mathbf{S} = (S[1], ..., S[N])$ Fit Mixture Model $p(f|\theta)$ using \mathbf{S} Dictionary $\mathcal{D} = \left\{\hat{\theta}\right\}$


2. CREATE A DICTIONARY OF MODELS

How the sounds are grouped and splitted:

Group of sounds $(G_1) \cdots (G_i) \cdots (G_l)$

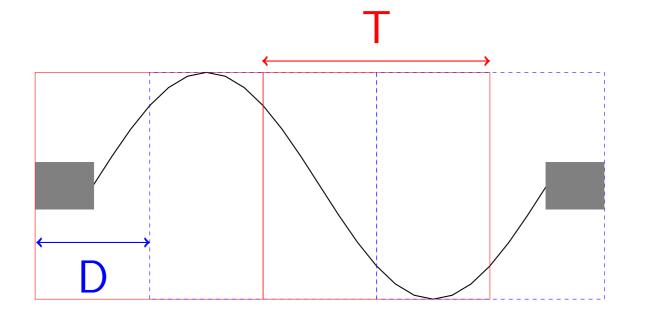
Sounds

Sound buffers

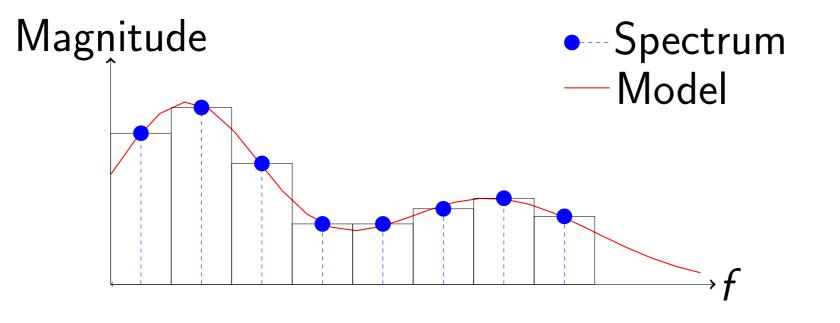
Conditional probabilities of the groups G_i^r :

 $p(G_i^r | \mathbf{S}^r) = \frac{p(\mathbf{S}^r | G_i^r) p(G_i^r)}{\sum_h p(\mathbf{S}^r | G_h^r) p(G_h^r)}.$

Aggregate the probabilities over *R* **buffers**: $p(G_i|\mathbf{S}) = \prod p(G_i^r|\mathbf{S}^r).$

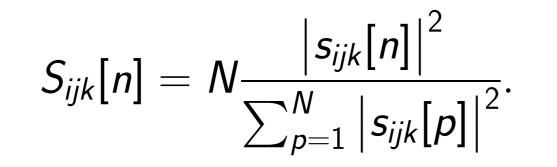

Final decision (for every group of *R* buffers): $\widehat{G}_i = \operatorname{argmax} p(G_i | \mathbf{S}).$

5. RESULTS & DISCUSSION


Cross-Validation Good classification rate (%) (Comparison with state-of-the-art methods)

Dataset	A-Volute	ESC-50	ESC-10
Our algorithm	96.5	94.0	96.0
Parametric method	73.6	45.5	73.5
Non-parametric method	46.6	53.2	76.0

Split a sound into buffers with a window size T and an overlap D:



Modeling of each buffer with a mixture model [2]:

3. SOUND MODELS

Normalized spectrum:

Human

91.8 81.3 95.7

Parametric method: standard GMM with standard features [1] **Non-parametic method**: Deep ConvNet with spectrogram features [3]

> Complexity (Example on the A-Volute database)

	O(Number of operations)
Our algorithm	$28 imes10^{6}$
Parametric method	$2 imes 10^3$
Non-parametric method	$14 imes10^{6}$

6. **RESOURCES**

Website available with free demonstrator of the method:

Mixture model:

$$p(f|\boldsymbol{\theta}_{ijk}) = \sum_{m=1}^{M_{ijk}} \pi_{ijk}^{(m)} \mathcal{N}\left(f \mid \mu_{ijk}^{(m)}, \left(\sigma_{ijk}^{(m)}\right)^2\right).$$

Model likelihood for binned data:

$$\mathcal{L}(oldsymbol{ heta}_{ijk}) = p(\mathbf{S}|oldsymbol{ heta}_{ijk}) = \prod_{n=1}^{N} \left(\int_{f[n]}^{f[n+1]} p(f|oldsymbol{ heta}_{ijk}) df
ight)^{S[n]}.$$

7. REFERENCES

[1] C. Clavel, T. Ehrette, and G. Richard. "Events Detection for an Audio-Based Surveillance System". In: 2005 IEEE International Conference on Multimedia and *Expo*. July 2005, pp. 1306–1309. [2] G. McLachlan and D. Peel. *Finite Mixture Models*. Wiley, 2000.
 [3] K. J. Piczak. "Environmental sound classification with convolutional neural networks". In: 2015 IEEE 25th International Workshop on Machine Learning for Signal Processing (MLSP). Sept. 2015, pp. 1–6.

March 5-9th, 2017

maxime.baelde@a-volute.com