INTEGRATING RARE MINUTIAE IN GENERIC FINGERPRINT MATCHERS FOR FORENSICS

RAM P. KRISH, <u>JULIAN FIERREZ</u>, DANIEL RAMOS BIOMETRIC RECOGNITION GROUP - ATVS ESCUELA POLITECNICA SUPERIOR UNIVERSIDAD AUTONOMA DE MADRID, SPAIN

7th IEEE International Workshop on Information Forensics and Security (WIFS) 2015. Rome, Italy

November 2015

OUTLINE

Introduction

- ➤ Forensic Fingerprints
- Latent Fingerprint Technology Evaluations
- ➤ Challenge Addressed in this Work
- Systems and Database
- Contribution of this work
 - > Extended Fingerprint Feature Sets
- Conclusions & Future Work

Galton Details : More specific in criminology

- Francis Galton coined the term *minutiae* (discriminant features).
- Described fingerprint comparison based on minutiae.
- Galton's method first used in a homicide case in India in 1897.
- Conducted studies on sufficiency of minutiae.

Finger Prints. Francis Galton Macmillan, 1892

Common fingerprint features used for comparisons

Typical minutiae:

- □ Ridge-Endings
- **D** Bifurcations

Singular points:

Core

Delta

Extended Feature Sets

Automated Fingerprint Identification Systems (AFIS)

- □ Project to develop AFIS started in early 1960.
- Initiated by United States, United Kingdom, France and Japan.
- Used to obtain a shortlist of possible suspects from criminal database.
- This is followed by forensic friction ridge examination.

Fingerprint Examination Process

Stage 2

Fingerprint Examination Process

Latent Fingerprint Matching Evaluations

Lights-Out System

- □ Feature Extraction & Matching are *automatic*.
- NIST (National Institute of Standards and Technology) evaluation of AFIS in Lights-Out mode.
 - □ Evaluation of Latent Fingerprint Technology (**ELFT**)
- Companies: NEC, Cogent, Motorola, L1-Identity, etc.

Phase of ELFT	Database size	Rank-I Accuracy
Phase-I (2007)	100 latents vs 10,000 rolled prints	80.0%
Phase-II, Evaluation-I (2009)	835 latents vs 100,000 rolled prints	97.2%
Phase-II, Evaluation-II (2012)	1,114 latents vs 100,000 rolled prints	63.4%

Latent Fingerprint Matching Evaluations

Lights-Out System

- □ Studies show that not all qualities of latent fingerprints benefits from automated procedures.
- □ Manual intervention is still needed.
- □ It is a usual practice in friction ridge examination procedures where forensic examiner manually extracts the discriminant features.

Latent Fingerprint Matching Evaluations

Semi Lights-Out System

- □ Feature Extraction : manual, involves Extended Feature Sets (EFS) Matching : automatic
- NIST evaluation of AFIS in Semi Lights-Out mode Evaluation of Latent Fingerprint Technology (ELFT-EFS)
- □ Companies: Sagem, NEC, Cogent, Sonda, Warwick.

Phase of ELFT-EFS	Database size	Rank-I Accuracy
Evaluation-I (2011)	1,114 latents vs 1,000,000 rolled & 1,000,000 plain prints	66.7%
Evaluation-II (2012)	1,066 latents vs 1,000,000 rolled & 1,000,000 plain prints	71.4%

CHALLENGE ADDRESSED IN THIS WORK

CHALLENGE

Incorporating the manually extracted extended fingerprint feature sets to improve the performance of minutiae-based matchers.

- □ Studies show that manual interventions is inevitable in forensic fingerprint evaluations.
- Most minutiae-based matchers uses only typical minutia features such as ridge-endings & bifurcations.

How to use rare minutiae features in typical minutiae matchers?

Systems & Database

SYSTEMS

General purpose Minutiae-based Fingerprint Recognition System

SYSTEMS AND DATABASE

Fingerprint Matchers

□ NIST-Bozorth3 (publicly available)

NIST : National Institute for Standards and Technologies

U VeriFinger (commercial, not public)

Forensic Database

- Guardia Civil Database (GCDB)
 - □ Contains 268 latent and corresponding tenprints
 - Average number of latent minutiae: 13
 - Average number of tenprint minutiae: 125
 - □ Contains rare minutia features, manually extracted.

SYSTEMS AND DATABASE

Guardia Civil Database (GCDB)

Rare minutia features present in GCDB

No	Minutiae type	No	Minutiae type	No	Minutiae type
1	Ridge Ending	6	Interruption	11	Circle
2	Bifurcation	7	Enclosure	12	Delta
3	Deviation	8	Point	13	Assemble
4	Bridge	9	Ridge Crossing	14	M-structure
5	Fragment	10	Transversal	15	Return

SYSTEMS AND DATABASE Guardia Civil Database (GCDB)

SYSTEMS AND DATABASE Guardia Civil Database (GCDB)

SYSTEMS AND DATABASE Guardia Civil Database (GCDB)

INCORPORATING EXTENDED FEATURE SETS (Rare Minutiae)

EXTENDED FEATURE SETS

EXTENDED FEATURE

BEOCK DIAGRAM OF SYSTEM DEVELOPED

EXTENDED FEATURE SETS Proposed algorithm:

Stage 1

- Establish one-to-one correspondence between latent minutia set (L) and tenprint minutiae set (M) by superimposing the rare-minutia feature.
- Minutiae pairs which are close enough are considered mated pairs.
- To compensate for rotational alignment, we rotate the latent in the range [-45°, +45°].
- Optimal rotation is one for which the average sum of distance between closest pairs is minimum.
- Once correspondence is established, we find least square fitting error (E^{L,Ms}) to transform the latent minutia points (L) and subset of tenprint minutia points (M_s) for affine transformation.

EXTENDED FEATURE SETS Proposed algorithm:

Stage 2 : Weighted scores

- S_m is the similarity score generated by reference minutiae-based matcher.
- We obtain the modified similarity score S'_m as follows:

$$S'_{m} = \begin{cases} S_{m} x w_{i}, \text{ if } E^{L,Ms} \leq E & (reward the score) \\ S_{m} x p_{i}, \text{ otherwise} & (penalize the score) \end{cases}$$

if $E^{L,Ms} \le E$ comparison is a match. if $E^{L,Ms} > E \longrightarrow$ comparison is a non-match.

EXTENDED FEATURE Statistics of rare minutia features

More **rare** the feature is, **higher** the **penalty** or **reward** to the similarity score.

No	Minutiae Type	$\mathbf{Probability}\;(p_i)$	$\begin{array}{l} \mathbf{Weight} \\ (w_i = -\log_{10} p_i) \end{array}$
1	Ridge-ending	0.5634	0.2492
2	Bifurcation	0.3620	0.4413
3	Deviation	0.0015	2.8294
4	Bridge	0.0024	2.6253
5	Fragment	0.0444	1.3523
6	Interruption	0.0021	2.6833
7	Enclosure	0.0204	1.6896
8	Point	0.0036	2.4492
10	Transversal	0.0003	3.5284

R. P. Krish, J. Fierrez, D. Ramos and R. Wang, "On the importance of rare features in AFIS-ranked latent fingerprint matched templates", in Proc. 47th IEEE ICCST, Medellin, Colombia, October 2013

Extended Feature Sets

Database used:

- Guardia Civil Database (GCDB)
- □ 268 pairs of latents & tenprints
- □ Contains rare minutiae types
- □ Comparisons: 268 match scores; 268 x 267 non-match scores

Matchers used:

- □ NIST Bozorth3
- □ VeriFinger SDK

Extended Feature Sets

Two configurations were compared in the experiments:

- □ Typical (Baseline) : Only ridge-endings and bifurcations were used.
- Typical + Rare (Automatic) : Similarity scores of minutiae matchers were modified based on the fitting error proposed in our algorithm.

EXPERIMENTS NIST-Bozorth3

EXPERIMENTS VeriFinger-SDK

NIST-Bozorth3

Verifinger-SDK

CONCLUSIONS & FUTURE WORK

CONCLUSIONS

Use of Extended Feature Sets

- □ Adapting existing typical minutiae-based matchers to incorporate EFS (rare minutiae features) significantly improves rank identification accuracies.
- We developed a specific algorithm to align latent minutiae pattern and tenprint minutiae pattern based on rare minutiae features.
- Presented population statistics about rare minutiae feature in realistic forensic database.

FUTURE WORK

Use of Extended Feature Sets

- Algorithm to extract rare-minutiae from high resolution fingerprint image.
- □ Instead of entropy-based measure, use other techniques to reward the similarity scores of reference minutiae-matcher.
- Develop Likelihood Ratio based Evidence Evaluation models using AFIS scores which includes rare minutiae.

Thank You