

Piecewise Planar Super-Resolution for 3D Scene

Gaoang Wang, Yu Hen Hu, Hongrui Jiang University of Wisconsin – Madison Dept. Electrical and Computer Engineering Madison, WI 53706 hu@engr.wisc.edu

Outline

- Background of super-resolution
- Related work
- Model introduction
- Proposed method
- Experiments and results
- Conclusion

Background of super-resolution

- Reconstruct a high resolution image with one or multiple low resolution images.
- Compensation for the limit of the camera device.
- Use for image or video enhancement.

Related work

• Single-view image resolution

J. Yang, J. Wright, T. S. Huang, and Y. Ma, "Image superresolution via sparse representation."

Disadvantage: cannot take advantages from multiviews.

• Multi-view image resolution

S. Farsiu, D. Robinson, M. Elad, and P. Milanfar, "Fast and robust super-resolution."

A. V. Bhavsar and A. Rajagopalan, "Resolution enhancement in multi-image stereo."

Disadvantage: some algorithms only solve for 2D images; or largely depends on the accurate depth estimation to reconstruct for 3D scene.

Model introduction

 $Y_k = DHW_k I_{X_0}, k = 0, 1, 2, \cdots, K - 1.$

- I_{x0} is the reference image frame; W_k is some warp transform (the transform may be different for different parts of the image since it is a 3D scene image); H is the blur kernel; D is the down-sampling operator; Y_k is the low resolution image of the k-th frame.
- The question is how to reconstruct the high resolution image from multiview low resolution images.
- **Solution**: Segment images into piecewise planar parts and estimate the W_k transform for each part!

Proposed method

Depth estimation by graph cut
Y. Boykov, O. Veksler, and R. Zabih, "Fast approximate energy minimization via graph cuts."

The depth information is only used for plane segmentation.

Plane segmentation

We label each pixel point by minimizing the following object function,

$$l_{p_0} = \arg\min_{l} \left(|1 - n_l^T p_0|^2 + \lambda \sum_{p \in C(p_0)} |l - l_p|^2 \right)$$

Proposed method

• Homography and warp transform estimation Here we update the pixel label by minimizing the intensity difference for the same point from different frames,

$$l_{p_0} = \arg\min_{l=1,2,...,m_{opt}} \left(\sum_{k=1,2,...,K-1} \sum_{p_l \in C(p_0)} d_k(p_l) \right)$$

where the intensity difference is defined below,

$$d_k(p_{\pi}) = |I(p_{\pi}) - I(H_{\pi,k}p_{\pi})|^2 V_{p_{\pi}} / N_{C(p_{\pi})}$$

Finally after label updated, we estimate the transform by labeled feature points.

Proposed method

• Image reconstruction

Project the reconstructed image into image subspace by using Tikhonov regularization,

$$\hat{I}_{X_0} = \arg\min_{I_{X_0}} \{\sum_{k=1}^{K} ||QM_k I_{X_0} - QY_k||_2^2 + \alpha ||LI_{X_0}||_2^2\}$$

Here, we use a diagnal matrix Q to remove the occlusion and artifacts between plane boundaries. We set the diagnal elements equal to zero if they are invisible.

• "Bull" images from Middlebury dataset Four low resolution images are shown below.

From left to right: Single-view SR (PSNR = 35.1667), Proposed method (PSNR = 35.3245), Ground truth.

Cropped image results. From left to right: Single-view SR, Proposed method, Ground truth.

• Kitchen Scene

Four low resolution images are shown below.

From left to right: Single-view SR (PSNR = 28.0398), Proposed method (PSNR = 29.3387), Ground truth.

Cropped image results. From left to right: Single-view SR, Proposed method, Ground truth.

Conclusion and future work

- With combined information from multiview low resolution images, we can get a better performance than single view reconstruction.
- We will look for solutions that combines the advantages from both single-view and multiview super-resolution.