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Objectives

In this work, we investigate the robustness of sparse regression models with strongly
correlated covariates to adversarially designed measurement noises. Specifically, we
consider the family of ordered weighted `1 (OWL) [1] regularized regression methods
and study the case of OSCAR [2] (octagonal shrinkage clustering algorithm for
regression) in the adversarial setting.

Introduction

The OWL family of regularizers is a widely adopted method for sparse regression with
strongly correlated covariates. It is worth mentioning that the octagonal shrinkage and
clustering algorithm for regression [2], which is called as OSCAR, is in fact a special
case of the OWL regularizer [3]. OSCAR is known to be more effective in identifying
feature groups (i.e., strongly correlated covariates) than other feature selection methods
such as LASSO.

Ωw(x) = p∑
i=1
wi|x|↓i . (1)

The OSCAR regularizer [2] is a special case of the OWL norm in (1) when wi =
λ1 + λ2(p− i), where λ1, λ2 ≥ 0.
We consider the OWL-regularized linear regression problem taking the following form:

Minimize x∈Rp‖y−Ax‖2
2 + λΩw(x), (2)

where y ∈ Rn is the vector of n noisy measurements, A ∈ Rn×p is the design matrix,
and λ ≥ 0 is the regularization parameter of the OWL norm.

Maximizeν∈Rn ‖x̂(ν)− x∗‖2
2 (3)

subject to ‖ν‖1/n ≤ ε,

x̂(ν) = arg min
x∈Rp
‖y−Ax‖2

2 + λΩw(x).
Our adversarial formulation studies the robustness of OWL-regularized regression in
the worst-case scenario by exploring the space of constrained measurement noise to
maximize the feature group identification loss in (3). In our setting, we assume the
adversary has access to the ground-truth vector x∗ so (3) can be written as

x̂(ν) = arg min
x∈Rp
‖A(x∗ − x) + ν‖2

2 + λΩw(x). (4)

x̂(ν) = ProxOSCAR-APO
u∗ −AT (Au∗ − y)/α∗



= ProxOSCAR-APO
u∗ −AT (Au∗ −Ax∗ − ν)/α∗

 , (5)
where ProxOSCAR-APO(·) is defined in [3]. With the method of Lagrange multipliers,
we are interested in solving the following alternative optimization problem

Minimizeν∈Rn − ‖x̂(ν)− x∗‖2
2 + γ

n
‖ν‖1, (6)

where γ > 0 is a tunable regularization coefficient such that the solution ν∗ to (6) will
satisfy the norm constraint ‖ν∗‖1/n ≤ ε.

Main Experimental Result
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Figure: Assessing effect of our proposed adversarial attack on OSCAR (rightmost column) by varying the attack strength ε with ε = 0.05 (top row), ε = 0.1 (second row), ε = 0.2 (third row) and ε = 0.3 (fourth row).
In each column, the ground truth refers to x∗, OSCAR refers to the regression results without noise, and OSCAR + Attack refers to the regression results against our designed adversarial noises. The feature groups can
be adversarially misaligned even for small ε.

Algorithm

Input: A, x∗, x∗, w, u∗, α∗, ε, {ηk}
Output: ν∗

Initialization: k = 0, γ = γ0, g ∼ N (0, In) and ν(0) = ε · g/‖g‖1
while not converged do

1. b = u∗ −AT
Au∗ −Ax∗ − ν(k)

 /α∗

2. Find the permutation P(b) s.t. P(b)|b| = |b|↓
3. w̃ = P(b)Tw
4. ∂f

∂νi
= ∑

j:|bj|>w̃j−2
bj − sign(bj)w̃j − x∗j

 · Aij

α∗

for all i ∈ {1, . . . , n}
5. ν(k+1) = Sγ/n

ν(k) − ηk∇f (ν(k))


6. k ← k + 1
end while
ν∗← ν(k)

if ‖ν∗‖1/n > ε then
Re-initialization with a larger γ and redo the while loop

end if

Discussion

In Figure 1, the x-axis represents the feature index and the y-axis represents the coeffi-
cient values. The left column represents the ground-truth x∗ with two defined feature
groups. The middle column shows the feature grouping obtained after running OS-
CAR algorithm in the noiseless setting. The right column shows how the grouping is
adversely affected after our attack. We varied the noise budget ε from 0.05 to 0.3 to
assess the effect of the attack. One can observe that although some grouped features
are retained up to a certain degree, the true effect of the attack can be seen on the
features which are misaligned from their original feature groups, even for relatively
small ε.

Conclusion and Future Work

To study the robustness of OWL-regularized regression methods in the adversarial
setting, we propose a novel formulation for finding norm-bounded adversarial per-
turbations in the measurement model and illustrates the pipeline of adversarial noise
generation in the case of OSCAR with APO as its solver. In the adversarial setting, the
experimental results show that our proposed approach can effectively craft adversar-
ial noises that severely degrade the regression performance in identifying ground-truth
grouped features, even in the regime of small noise budgets. Our results indicate the
potential risk of lacking robustness to adversarial noises in the tested regression method.
One possible extension of our approach is to devise adversary-resilient regression meth-
ods. Our future work also includes developing a generic framework for generating
adversarial noises for the entire family of OWL-regularized regression methods.
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