

Particle Flow for Sequential Monte Carlo Implementation of Probability Hypothesis Density

Yang Liu¹, Wenwu Wang¹, Yuxin Zhao²

Centre for Vision, Speech and Signal Processing, University of Surrey, UK ² College of Automation, Harbin Engineering University, China

Abstract

• Audio visual multi-target tracking aims to track multi-target with audio information and visual information, even when the number of targets is unknow.

• The main disadvantage of sequential Monte Carlo (SMC) Implementation of Probability Hypothesis Density (PHD) filter is the weight **degeneracy problem**.

• We propose a novel SMC implementation for the PHD filter assisted by the **particle flow** (PF), which is called PF-SMC-PHD filter.

Particle flow

• The key idea of the particle flow is to migrate particles from the unnormalized prior density to the posterior density by a physical flow [1].

• λ is a step size parameter taking values from the set $[0, \Delta\lambda, 2\Delta\lambda, \cdots, 1]$ as the artificial time.

Particle flow SMC-PHD filter

• We add an adjustment step between the prediction step and update step, where the particle flow is incorporated to adjust the states and weights of the particles by smoothly migrating them.

• We generate the same number of flows as that of the observations.

• We duplicate the set of the selected particles, and create the flow using only the duplicated particles as Figure 2.

References

Ackownlegement

 F. Daum and J. Huang, "Small curvature particle flow for nonlinear filtes," in SPIE Defence, Security, and Sensing International Society for Optics and Photonis, 2012, pp. 83930A-12.

This work was supported by the BPSRC Programme Grant S3A: Future Spatial Audio for an Immersive Listener Experience at Home (EP/L000539/1), the BBC as partoffhe BBC Audio Research Partnership, the China Scholaship Council (CSC) and the EPSRC grant EP/K0138071 and the MOD University Defence Research Collaboration in Signal Processing.

Figure 2 The adjustment step in PF-SMC-PHD. The star represents an observation.

Experiments

• We design an occlusion scenario, in which three targets move in the certain area and one target appears suddenly at frame 70.

• There are 50 random clutters in observations and their positions are set randomly.

Figure 3 Optimal sub-pattern assignment of the compared filtering algorithms at each time step.

Figure 4 Effective sample size for SMC-PHD filter and PF-SMC-PHD filter.

Conclusion

- OPSA of the PF-SMC-PHD filter (24.8) is only 40% of that of the SMC-PHD filter (61.7).
- The SMC-PHD filter re-samples the particles 12 times while PF-SMC-PHD filter re-samples them only 5 times. Particle flow can mitigate the particle degeneracy problem.