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[ Abstract ]

* Audio visual multi-target tracking aims to track
multi-target with audio information and visual
information, even when the number of targets is
unknow.

* The main disadvantage of sequential Monte Carlo
(SMC) Implementation of Probability Hypothesis
Density (PHD) filter is the weight degeneracy
problem.

* We propose a novel SMC implementation for the
PHD filter assisted bythe particle flow (PF), which is
called PF-SMC-PHDfilter.

(a) (b) (c)

Figure 2 The adjustment step in PF-SMC-PHD. The
star represents an observation.
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[ Particle flow ]

* The key idea of the particle flow is to migrate
particles from the unnormalized prior density to
the posteriordensity by a physical flow [1].

* A is a step size parameter taking values from the
set [0,AN,2AM,-+,1] as the artificial time.
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Figure 1. Particle flowas the Baye’s rule.
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[ Particle flow SMC-PHD filter

*We add an adjustment step between the
prediction step and update step, where the particle
flow is incorporated to adjust the states and
weights of the particles by smoothly migrating them.
* We generate the same number of flows asthat of
the observations.

* We duplicate the set of the selected particles, and
create the flow using only the duplicated particles
as Figure 2.

[ Experiments ]

*We design an occlusion scenario, in which three
targets move in the certain area and one target
appears suddenlyat frame 70.

*There are 50 random clutters in observations and
their positions are set randomly.
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Figure 3 Optimal sub-patternassignment of the
compared filtering algorithms at each time step.
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Figure 4 Effective sample size for SMC-PHDfilter and
PF-SMC-PHD filter.

Conclusion
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* OPSA of the PF-SMC-PHD filter (24.8) is only 40%
of that of the SMC-PHD filter (61.7).

*The SMC-PHD filter re-samples the particles 12
times while PF-SMC-PHD filter re-samples them
only 5 times. Particle flow can mitigate the particle
degeneracy problem.




