

ABSTRACT

In heterogeneous networks (HetNets) system, the exploitation of small cells (SCs) will be enhanced spectral efficiency that means guarantee QoS and coverage area to user terminals.

We propose a joint linear precoder design problem to maximize the energy efficiency of the HetNet model.

To tackle the cross-tier interference in the HetNets, we exploit zero-forcing precoding where the interference at the users is cancelled out by block diagonalization scheme.

A novel group sparsity promoted as group Lasso is proposed using the weighted ℓ_1 norm minimization, where the group sparsity pattern indicates those SCs that can be switched off and non-associated users.

Simulation results show that the proposed algorithm outperforms many existing algorithms in terms of the total energy efficiency in the HetNets.

CONTACT

Long Dinh Nguyen, PhD student School of Electronics, Electrical Engineering and Computer Science Queen's University Belfast, UK Email: Inguyen04@qub.ac.uk Phone: +44 7490 675239

Introduction & Model

In our work, we consider a multiuser multiple-input multiple-output (MU-MIMO) HetNet in which a macro base station (MBS) and multiple SCs coexist to serve multiple user. Meanwhile, the cochannel transmissions are widely deployed that result in both intra-tier interference and cross-tier interference. In this model, a key challenge for successful deployment of HetNets is how efficiently to handle the cross-tier interferences.

Figure 1. An example HetNets System model.

For coherent coordination transmission, the received signal at user k is given by

$$oldsymbol{y}_k = \left(\sum_{s \in \mathcal{S}} oldsymbol{H}_k^s oldsymbol{F}_k^s
ight) oldsymbol{x}_k + \sum_{i
eq k} \left(\sum_{s \in \mathcal{S}} oldsymbol{H}_k^s oldsymbol{F}_i^s
ight) oldsymbol{x}_i + oldsymbol{n}_k$$

Applying zero-forcing (ZF) technique to eliminate the terms of interference. Then the zero-interference constraints imply that precoder matrix F_{ν} lie in the null space of H_{ν} , i.e.

$$\begin{split} \boldsymbol{H}_{k} &= \left[\boldsymbol{H}_{k}^{0}, \boldsymbol{H}_{k}^{1}, ..., \boldsymbol{H}_{k}^{S}\right] \in \mathbb{C}^{L_{k} \times \sum_{s \in \mathcal{S}} M_{s}} \\ \boldsymbol{F}_{k} &= \left[\boldsymbol{F}_{k}^{0}; \boldsymbol{F}_{k}^{1}; ...; \boldsymbol{F}_{k}^{S}\right] \in \mathbb{C}^{\sum_{s \in \mathcal{S}} M_{s} \times L_{k}} \\ \sum_{s \in \mathcal{S}} \boldsymbol{H}_{k}^{s} \boldsymbol{F}_{i}^{s} &= \boldsymbol{0} \ \forall i \neq k. \qquad \boldsymbol{H}_{k} \boldsymbol{F}_{i} = \boldsymbol{0} \ , \ \forall i \neq k. \end{split}$$

where H_k^S , F_k^S are channel matrix and precoder matrix from sth BS to *k*th user.

In the meantime, green communications is technically challenging to meet the required QoS for all users while minimize energy consumption, and thus **improving energy efficiency (EE) performance** is significant necessary for the large network. The value of EE is denoted as the ratio between the amount of transmitted bits (data rates) and total power consumption.

$$\begin{split} C_k(\{\boldsymbol{F}_k^s\}) &= \log |\boldsymbol{I} + \frac{1}{\sigma_k^2} \boldsymbol{H}_k \boldsymbol{F}_k \boldsymbol{F}_k^H \boldsymbol{H}_k^H| \\ P^{\mathsf{total}}(\{\boldsymbol{F}_k^s\}) &= \sum_{s \in \mathcal{S}} \frac{1}{\lambda_s} \sum_{k \in \mathcal{K}} \operatorname{Tr} \left(\boldsymbol{F}_k^s (\boldsymbol{F}_k^s)^H \right) + P^{\mathsf{cir}} \\ \mathrm{EE} &= \frac{\sum_{k \in \mathcal{K}} C_k(\{\boldsymbol{F}_k^s\})}{P^{\mathsf{total}}(\{\boldsymbol{F}_k^s\})}. \end{split}$$

Energy Efficiency Maximization for Heterogeneous Networks: A Joint Linear Precoder Design and Small-cell Switching-off Approach Long D. Nguyen¹, Trung Q. Duong¹, Diep N. Nguyen², Le-Nam Tran³ ¹Queen's University Belfast, UK; ²University of Technology Sydney, Australia; ³Maynooth University, Ireland

Energy Efficiency Approach

The EE maximization problem as fractional programming with Q_k representing the Cholesky decomposition form of F_k .

$$\max_{\{\boldsymbol{Q}_k\}} \frac{\sum_{k \in \mathcal{K}} C_k(\{\boldsymbol{Q}_k\})}{P^{\mathsf{total}}(\{\boldsymbol{Q}_k\})}$$

s.t. $\log \left| \boldsymbol{I} + \overline{\boldsymbol{H}}_k \boldsymbol{Q}_k \overline{\boldsymbol{H}}_k^H \right| \ge \overline{C}_k$, $k \in \mathcal{K}$
 $\sum_{k \in \mathcal{K}} \operatorname{Tr} \left(\widetilde{\boldsymbol{G}}_k^s \boldsymbol{Q}_k (\widetilde{\boldsymbol{G}}_k^s)^H \right) \le P_{\max}^s$, $s \in S$
 $\sum_{k \in \mathcal{K}} \left[\widetilde{\boldsymbol{G}}_k^s \boldsymbol{Q}_k (\widetilde{\boldsymbol{G}}_k^s)^H \right]_{\ell,\ell} \le P_{\ell,\max}^s$, $\ell = 1, ..., M_s$, $s \in \mathcal{S}$

To further increase the system EE, we may turn off some SCs which have negligible contribution. Employing a sparsity-inducing norm method to minimize the number of active SCs.

Denote $F^{s} = [F_{1}^{s}; F_{2}^{s}; ...; F_{K}^{s}]$ which stacks all the precoders from BS s to all the users in the system. Denote $f_s = \|\mathbf{F}^s\|_F^2$ corresponding the Frobenius norm of F^{s} . We note that the SC s is turned off if $\|\boldsymbol{F}^{S}\|_{F}^{2} = 0$.

We employ a sparsity-inducing norm method based on l_1 norm for turning off scheme.

$$\max_{\boldsymbol{Q}_k\}\in\mathcal{Q}}\left\{\frac{\sum_{k\in\mathcal{K}}C_k(\{\boldsymbol{Q}_k\})}{P^{\mathsf{total}}(\{\boldsymbol{Q}_k\})} - \gamma\cdot\psi(\{\boldsymbol{Q}_k\})\right\}$$

Optimization EEmax problem using Dinkelbach's method

The EE function is concave-convex problem programming for which Dinkelbach's method can be used to find the optimal solution.

$$\max_{\{\boldsymbol{Q}_k\}\in\mathcal{Q}}\left\{\sum_{k\in\mathcal{K}}C_k(\{\boldsymbol{Q}_k\})-\tau P^{\mathsf{total}}(\{\boldsymbol{Q}_k\})\right\}$$

Improving EEmax with selection approaches via reweighted ℓ_1 norm

We use the optimal $\{\tau^*\}$ after the implementation of first scheme, and thus the EE maximization problem with selection approaches using sparsity inducing norm as

$$\max_{\{\boldsymbol{Q}_k\}\in\mathcal{Q}}\left\{\sum_{k\in\mathcal{K}}C_k(\{\boldsymbol{Q}_k\})-\tau^*P^{\mathsf{total}}(\{\boldsymbol{Q}_k\})-\gamma\cdot\psi(\{\boldsymbol{Q}_k\})\right\}$$

Results

A single-cell HetNet with one MBS and 5 SCs to serve 6 single-antenna user. The coverage of MBS and SC is 500m and 40m. The path loss model from MBS to user is as $128.1 + 37.6\log_{10} R$ [dB], and from SCs to user is as 140.7 + 36.7log₁₀ R [dB]. The MBS and each SC are equipped with $M_0 = 6$ and $M_s = 2$ antennas. The transmission power at MBS is 46 dBm and SC is 30 dBm.

In chart 1 and 2, the convergence characteristic of the proposed algorithms 1 and 2 for EE performance analysis. In all cases of coordinated circuit power values, the EE performance monotonically increases and converges over several iterations.

In chart 3 and 4, total EE performance of proposed method (JPBS-UA) outperform the other schemes such as all activation scheme ("All BSs"), random SC switch-off scheme ("RandOFF-1SC" and "RandOFF-2SC"). The sparisty of JPBS-UA method is increasing between γ_1 and γ_2 .

for sparisity inducing norm.

Chart 4. Total EE performance for different schemes versus the coordinated circuit power with $\gamma = [0.03 \ 0.1]$.

performance.

- Combination of joint precoding design and selection approaches for the downlink of multicell MIMO HetNets.
- Eliminate the cross-tier interference of HetNets model by zeroforcing technique and maximization the EE performance Provide the selection approaches for activate SCs and user
- performance.
- [1] W. Shin, W. Noh, K. Jang, and H.-H. Choi, "Hierarchical interference alignment for downlink heterogeneous networks," IEEE Trans. Wireless Commun., vol. 11, no. 12, pp. 4549–4559, Dec 2012.
- [2] Y. S. Soh, T. Q. Quek, M. Kountouris, and H. Shin, "Energy efficient heterogeneous cellular networks," IEEE J.Sel. Areas Commun., vol. 31, no. 5, pp. 840–850, May 2013.
- [3] Z. Xu, C. Yang, G. Y. Li, Y. Liu, and S. Xu, "Energy-efficient comp precoding in heterogeneous networks," IEEE Trans. Signal Process., vol. 62, no. 4, pp. 1005–1017, Feb 2014.
- [4] Q. D. Vu, L. N. Tran, M. Juntti, and E. K. Hong, "Energy-efficient bandwidth and power allocation for multi-homing networks," IEEE Trans. Signal Process., vol. 63, no. 7, pp. 1684–1699, April 2015.
- 2008.

Discussion

In this work, precoding design is divided into two part with both handling the term of interferences and maximizing the total EE

- associations as sparsity-inducing norm to improve the total EE
- We demonstrated that our proposed method outperforms other existing schemes, which activate all BSs or turn off SC randomly, in terms of the EE performance.

[5] E. J. Candes, M. B. Wakin, and S. P. Boyd, "Enhancing sparsity by reweighted ℓ₁ minimization," *J. of Fourier Anal. Appl.*, vol. 14, no. 5-6, pp. 877–905, Dec