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Motivated with the concept of transform learning and the utility of rational wavelet 
transform in audio and speech processing, the objective of this work is to propose 
Rational Wavelet Transform Learning in the Statistical sense (RWLS) for natural  
images. The learned rational wavelet is used as the sparsifying transform for CS based 
reconstruction of natural images. 
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v Wavelets are used extensively as sparsifying basis for images. 
v Rational wavelets provide non-uniform frequency band representation. 
v Learned rational wavelet may provide better reconstruction results for images. 
v Lifting framework, extended to rational wavelets in [1] can be used to learn signal-

matched rational wavelets. 

Motivation 

General dyadic wavelet 
 
 
 
 
 
 
Lifting framework consists of three steps: 
•   Split: input into even and odd indexed samples. 
•   Predict: Predict one subband samples from the other 
      Correspondingly, update analysis highpass and synthesis lowpass filters using: 

 
 

•   Update: Update the other subband samples with the predicted subband samples 
 Correspondingly, update analysis lowpass and synthesis highpass filters using: 
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Learn statistically matched rational wavelet transform for column space and row space of 
natural images as follows: 
Rational Lazy Wavelet: Start with rational Lazy wavelet: 
Predict stage: Use rate converter to obtain and T(z) = t0z+t1z2 to obtain the prediction error 

e[n]=dnew[n]=x[3n+2]-t0x[3n+1]-t1x[3n+3].   
 
 
 
 
 
 
Learn T(z) by minimizing least square prediction error: 
 
Differentiating and equating to zero: 
 
 
E[AA] and E[Ab] are computed using (3). Update analysis highpass filter as follows: 
 
 
Update stage: Use rate converter and S(z) = s0+s1z-2. 
 
 
 
 
 
 
 
 
 

 
 
As images are rich in low frequency. Learn S(z) by solving: 
Update analysis lowpass filter as: 
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Fractional Brownian motion BH(t) is a Gaussian, zero mean, self similar, non-
stationary random process with stationary increments3. The auto-covariance of the 
corresponding discrete time process BH[n] is given by: 
 

                                             (3) 
where H is the self-similarity index and                                                   . 
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Fractional Brownian Motion 

Mathematically: 
Can be solved using following optimization framework4: 
     

1 1 1,m m n n n m n× × × ×= + <y A x η

x! = minx || y−Ax ||2
2     subject to ||Wx ||1≤ τ .

Compressive Sensing3 
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Frequency response of learned filters: 
 
 
 
 
 
                  a) Analysis lowpass filter                                 b) Analysis highpass filter 
 
Compressive sensing based reconstruction results of natural images: 
 
 
 
 
 
 
 
 
 
 
               Some natural images used in experiments 

     
    
 
 
     
 
 
    
 
 
 
    
 
(a)  3-level R-Pyramid Wavelet Decomposition     (b) 3-level R-Pyramid Wavelet Decomposition5  


