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Objective

Motivated with the concept of transform learning and the utility of rational wavelet
transform 1n audio and speech processing, the objective of this work 1s to propose
Rational Wavelet Transform Learning in the Statistical sense (RWLS) for natural
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Proposed Method

Learn statistically matched rational wavelet transform for column space and row space of

natural 1mages as follows:

Rational Lazy Wavelet: Start with rational Lazy wavelet: G.(z) =z’ ,F(z)=z""; i =0,1,2

images. The learned rational wavelet 1s used as the sparsifying transform for CS based

. , Predict stage: Use rate converter to obtain and 7(z) = f,z+¢,z* to obtain the prediction error
reconstruction of natural 1images.

e[n]=d"V[n]=x|3n+2]-t,x[3n+1]-t,x[3n+3].
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Learn 7(z) by minimizing least square prediction error:
Cn] = E(ez[n]) = E({x[3n+2]-¢t,x[3n+1]-¢t,x[3n + 3]}2)
Differentiating and equating to zero: 9 =0-2E[A'b]+2E[A'Alt=0
ot
= E[A'A]t = E[A'D

Motivation

“* Wavelets are used extensively as sparsifying basis for images.

Rational wavelets provide non-uniform frequency band representation.

Learned rational wavelet may provide better reconstruction results for images.

Lifting framework, extended to rational wavelets in [1] can be used to learn signal-

matched rational wavelets.
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General dyadic wavelet
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E[AXA] and E[ADb] are computed using (3). Update analysis highpass filter as follows:

1 3W3k

G, (z) = G,(2) - 2 G, (22 W;HT(z> ")

Update stage: Use rate converter and S(z) = s,+s,z2.
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Lifting framework consists of three steps:

x,n]
* Split: input 1nto even and odd indexed samples. ) <
22 PG (2) %@9—%3 S F(2) Pl B
* Predict: Predict one subband samples from the other i
Correspondingly, update analysis highpass and synthesis lowpass filters using:
new X[Tl] — — f[n]
H{*"(2) = H,(2) = Hy(2)T (=) s
Fy"(2) = F,(2) + F(2)T(2°) (D) e : ey i o J
h - h ~

« Update: Update the other subband samples with the predicted subband samples d[n]

Correspondingly, update analysis lowpass and synthesis highpass filters using:

H™ (2) = Hy(2) + H,(2)S(2")

- :
As images are rich in low frequency. Learn S(z) by solving: s=min||X-X,|

Update analysis lowpass filter as: G (2) =G (2)+G,(z2))S(2")
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(a) 3-level R-Pyramid Wavelet Decomposition  (b) 3-level R-Pyramid Wavelet Decomposition”

Fractional Brownian Motion

Fractional Brownian motion B,(f) 1s a Gaussian, zero mean, self similar, non-

Frequency response of learned filters:

stationary random process with stationary increments’. The auto-covariance of the = sor——— o "
° ° . . . " . U
corresponding discrete time process By[n] 1s given by: z b Py
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a) Analysis lowpass filter
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b) Analysis highpass filter

Compressive Sensing3

Mathematically: ¥ = Amxnxnxl +M,.., M<n

Can be solved using following optimization framework*:

Compressive sensing based reconstruction results of natural images:

Table 1: CS based reconstruction results of natural images
PSNR (in dB) over different
sampling ratios
90% 70% 50% 30%
5/3 3483 | 31.22 | 2694 | 22.13
Img1 9/7 3530 | 32.86 | 29.54 | 25.44
RWLS | 34.86 | 33.37 | 30.82 | 26.55

5/3 3883 | 3538 | 3146 | 27.18
Img4 9/7 39.36 | 36.78 | 3335 | 29.53

RWLS | 39.07 | 37.11 | 34.58 | 30.63

5/3 3951 | 3741 | 3357 | 27.48
Imgll | 9/7 39.74 | 3859 | 35.66 | 30.97
RWLS | 40.24 | 3950 | 37.44 | 32.63

X =min_|y—Ax|. subjectto | Wx| =<T.
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Some natural images used in experiments
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