
Filling the GAPs: 

Reducing the Complexity of Networks for 

Multi-attribute Image Aesthetic Prediction

Abstract. Computational aesthetics have seen much progress in

recent years with the increasing popularity of deep learning

methods. In this paper, we present two approaches that leverage

on the benefits of using Global Average Pooling (GAP) to reduce

the complexity of deep convolutional neural networks. The first

model fine-tunes a standard CNN with a newly introduced GAP

layer. The second approach extracts global and local CNN codes by

reducing the dimensionality of convolution layers with individual

GAP operations. We also extend these approaches to a multi-

attribute network which uses a style network to regularize the

aesthetic network. Experiments demonstrate the capability of

attaining comparable accuracy results while reducing training

complexity substantially.
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Method Accuracy (%) # params

AVA Baseline [1] 68.00 -

SPP [2] 72.85 -

DCNN [3] 73.25 -

RDCNN-style [3] 74.46 -

AnGAP-Finetuned 74.84 ~4K

AlexNet-Finetuned 75.13 ~56K

Multi Att. AnGAP-Finetuned 75.16 ~8K

DMA-Net [2] 75.41 -

RDCNN semantic [4] 75.42 -

AnGAP-FeatEns. 76.07 ~56K

Multi Att. AnGAP-FeatEns. 76.32 ~112K
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