
Robust Inference for State-Space Models
with Skewed Measurement Noise

Henri Nurminen*, Tohid Ardeshiri†, Robert Piché*, and Fredrik Gustafsson†

henri.nurminen@tut.fi, tohid@isy.liu.se, robert.piche@tut.fi, fredrik@isy.liu.se
*Dept. of Automation Science and Engineering, Tampere University of Technology, Finland

†Division of Automatic Control, Linköping University, Sweden

Motivation

Heavy-tailed and skewed
distributions arise e.g. in
radio positioning, eco-
nomics, biostatistics, and
psychiatry.
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Figure 1: Non-line-of-sight causes skew-
ness and outliers to TOA ranging error.
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Figure 2: Student’s t (middle) and skew-t (right) models accommodate
an outlier, while Gaussian (left) gives a large estimation error.
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Figure 3: Skew t (right) uses the information that large negative outliers
are improbable unlike Gaussian (left) and Student’s t (middle).

Skew t-distribution
The skew t-distribution [5] is an extension of Student’s t-distribution.
z∼ST(µ,R,∆, ν) has a hierarchical formulation as a Gaussian with
random scaling and random bias with known sign:

z | u, λ ∼ N(µ+ ∆u, 1
λ
R)

u | λ ∼ N+(0, 1
λ
I)

λ ∼ Gamma(ν
2
, ν
2
)

The parameters are
µ: location
∆: skewness
R: spread
ν: degrees of freedom z
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Figure 4: Skew-t densities with different ∆s

Linear state-space model with skew-t measurement noise:

xk = Axk−1 + wk−1, wk−1 ∼ N(0, Q)

yk = Cxk + ek, ek ∼ ST(µ,R,∆, ν).

Skew t variational Bayes filter [1]
The filtering posterior p(xk|y1:k) is not analytical, so we seek to ap-
proximate the posterior by

p(xk, uk, λk | y1:k) ≈ q(xk) q(uk) q(λk). (1)

Variational Bayes (VB) gives optimal q functions in Kullback–Leibler
sense. VB is an EM-type algorithm: update one variable at a time.

for k = 1 to K do
Initialize q(uk) and q(λk)
repeat

Update q(xk) = N(xk; ·, ·) given q(uk) and q(λk)

Update q(uk) = N+(uk; ·, ·) given q(λk) and q(xk)

Update q(λk) = Gamma(λk; ·, ·) given q(xk) and q(uk)

until Converged
Predict p(xk+1 | y1:k) ≈

∫
p(xk+1 | xk) q(xk) dxk

end for

GNSS & UWB positioning [1, 2]
Testing with simulated GNSS data and real UWB positioning data
and comparison with t VB filter (TVBF) [4] and Kalman filter (KF).
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Figure 5: GNSS simulation

Table 1: UWB positioning

Filter RMSE running
(m) time

EKF 1.36 1
STVBF 0.56 3

VB with recursive truncation [3]
The VB approximation (1) can show serious variance underestima-
tion. We relax (1) so that xk and uk are not approximated as inde-
pendent:

p(xk, uk, λk | y1:k) ≈ q(xk, uk) q(λk). (2)

q(xk, uk) is a truncated multivariate normal distribution, whose
mean and covariance matrix can be approximated with the com-
putationally light recursive truncation algorithm.

for k = 1 to K do
Initialize q(λk)
repeat

Approximate q(xk, uk) ≈ N([ xk
uk

] ; ·, ·) given q(λk)

Update q(λk) = Gamma(λk; ·, ·) given q(xk, uk)

until Converged
Predict p(xk+1 | y1:k) ≈

∫
p(xk+1 | xk) q(xk) dxk

end for
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