MULTIPLE SCATTERING EFFECTS ON THE LOCALIZATION OF TWO POINT SCATTERERS

Gang Shi¹, Arye Nehorai², Hongwei Liu³, Bo Chen³, Yuehai Wang⁴

¹State Key Laboratory of Integrated Services Networks, Xidian University ²Green Department of Electrical and Systems Engineering, Washington University in St. Louis ³National Lab of Radar Signal Processing, Xidian University ⁴Institute of Information and Communication Engineering, Zhejiang University

Introduction

- Multiple scattering is commonly ignored in sensing signal processing research because of small physical energy of the higher-order scattering components
- Multiple scattering in general can significantly increase the estimation precision of point scatterers [Shi and Nehorai, 2007]
- Under some scenarios, multiple scattering does not always lead to an improvement [Sentenac et al., 2007; Chen and Zhong, 2010]

 $\mathcal{I}_{\rm FL}(\boldsymbol{x}) = \frac{2}{\sigma^2} \Re \{ D_{\rm FL}^H D_{\rm FL} \}, \ D_{\rm FL} = A(T^{-1} - S)^{-1} \otimes \mathbf{1}_n^T \odot B - [A(T^{-1} - S)^{-1} \otimes A(T^{-1} - S)^{-1}] C + B \odot [A(T^{-1} - S)^{-1} \otimes \mathbf{1}_n^T]$ $\mathcal{I}_{\rm B}(\boldsymbol{x}) = \frac{2}{\sigma^2} \Re \{ D_{\rm B}^H D_{\rm B} \}, \ D_{\rm B} = AT \otimes \mathbf{1}_n^T \odot B + B \odot (AT \otimes \mathbf{1}_n^T)$ where $B = [\boldsymbol{b}(\boldsymbol{x}_1), \boldsymbol{b}(\boldsymbol{x}_2)], \ \boldsymbol{b}(\boldsymbol{x}_m) = \partial \boldsymbol{g}(\boldsymbol{x}_m) / \partial \boldsymbol{x}_m^T$ $C = [\boldsymbol{c}^T(\boldsymbol{x}_1), \boldsymbol{c}^T(\boldsymbol{x}_2)]^T, \ \boldsymbol{c}(\boldsymbol{x}_m) = \partial \boldsymbol{s}(\boldsymbol{x}_m) / \partial \boldsymbol{x}^T.$

 Identifying conditions under which multiple scattering is beneficial or detrimental to estimation is an open problem

Problem Statement

- Two point scatterers at unknown positions x_1 and x_2
- Known scattering coefficients τ_1 and τ_2 of the two scatterers
- N antennas at known positions $\alpha_1, \alpha_2, ..., \alpha_N$
- Known background Green function G

For homogeneous background in the three-dimensional space $G(\boldsymbol{x}_m, \boldsymbol{\alpha}_j) = -e^{ikR_{m,j}}/4\pi R_{m,j}, \quad R_{m,j} = |\boldsymbol{x}_m - \boldsymbol{\alpha}_j|$ $G(\boldsymbol{x}_1, \boldsymbol{x}_2) = -e^{ikR}/4\pi R, \quad R = |\boldsymbol{x}_1 - \boldsymbol{x}_2|$

<u>Answer</u>: The following gives a set of sufficient conditions under which multiple scattering is beneficial to the estimation of x_1 and x_2 .

- Far-field condition: $R_{m,j} \gg 1$
- Far-field and monostatic condition: $\overrightarrow{x_m lpha_j} pprox \overrightarrow{x_m lpha}$
- Well-separated condition: $R \gg 1$
- Weak interaction condition: $det((T^{-1} S)^{-1}) \approx \tau_1 \tau_2$
- Well-resolved condition: $\boldsymbol{g}^{H}(\boldsymbol{x}_{1})\boldsymbol{g}(\boldsymbol{x}_{2}) pprox 0$

In this case, the difference between the two Fisher information matrices $\mathcal{I}_{\rm FL}(\boldsymbol{x}) - \mathcal{I}_{\rm B}(\boldsymbol{x}) \approx \frac{4}{\sigma^2} k^2 |\tau_1|^2 |\tau_2|^2 |G(\boldsymbol{x}_1, \boldsymbol{x}_2)|^2 ||\boldsymbol{g}(\boldsymbol{x}_1)||_{\rm F}^2 ||\boldsymbol{g}(\boldsymbol{x}_2)||_{\rm F}^2 (\boldsymbol{y}_1 - \boldsymbol{y}_2) (\boldsymbol{y}_1 - \boldsymbol{y}_2)^T$ is semi-positive definitive, where $\boldsymbol{y}_1 = (\overline{\boldsymbol{x}_1 - \boldsymbol{\alpha}}^T, \overline{\boldsymbol{x}_2 - \boldsymbol{\alpha}}^T)^T \text{ and } \boldsymbol{y}_2 = (\overline{\boldsymbol{x}_1 - \boldsymbol{x}_2}^T, \overline{\boldsymbol{x}_2 - \boldsymbol{x}_1}^T)^T.$

Numerical Example

Consider a two-dimensional multistatic setup with a uniform linear array located between (-5,0) and (5,0) with a spacing of 0.5 between adjacent elements (unit in wavelength). The Green function is a far-field approximation of the zero-order Hankel function of the first kind. The two scatterers are located on the line y = 40 and are symmetric about the y-axis.

$\begin{array}{cccc} \Psi & \cdots & \Psi & \cdots & \Psi \\ & \alpha_1 & \alpha_j & \alpha_N \end{array}$ **Figure 1.** Illustration of the multistatic setup.

Multistatic model with multiple scattering (Foldy-Lax Model) can be formulated in the closed form as [Shi and Nehorai, 2005]

 $K_{\rm FL} = A(T^{-1} - S)^{-1}A^{T}$ where $A = [g(x_{1}), g(x_{2})]$, $T = \text{diag}\{\tau_{1}, \tau_{2}\}$, $S = \begin{bmatrix} 0 & G(x_{1}, x_{2}) \\ G(x_{1}, x_{2}) & 0 \end{bmatrix}$ $g(x_{1}) = [G(x_{1}, \alpha_{1}), G(x_{1}, \alpha_{2}), \dots, G(x_{1}, \alpha_{N})]^{T}$ $g(x_{2}) = [G(x_{2}, \alpha_{1}), G(x_{2}, \alpha_{2}), \dots, G(x_{2}, \alpha_{N})]^{T}$.

Multistatic model without multiple scattering (Born approximation Model) is

 $K_{\rm B} = ATA^{\rm T} = \tau_1 \boldsymbol{g}(\boldsymbol{x}_1) \boldsymbol{g}^{\rm T}(\boldsymbol{x}_1) + \tau_2 \boldsymbol{g}(\boldsymbol{x}_2) \boldsymbol{g}^{\rm T}(\boldsymbol{x}_2) \ .$

<u>Problem:</u> Under what conditions multiple scattering is beneficial or detrimental to the estimation of x_1 and x_2 ?

Fisher Information Comparison

Assuming the noises are additive, independent, and identically distributed following a multivariate, complex, circularly symmetric Gaussian with variance σ^2 , the Fisher information matrices with and without multiple scattering can be found as [Shi and Nehorai, 2007]

Figure 2. tr CRB_B(x) / tr CRB_{FL}(x) as a function of the distance between the two scatterers, $T_1 = T_2 = 1$.

Figure 3. tr CRB_B(x) / tr CRB_{FL}(x) as a function of the distance between the two scatterers, $T_1 = 1$, $T_2 = 10$.

Conclusion

- We compared analytically the Fisher information matrices for estimating locations of two
 point scatterers when multiple scattering exists and does not exist
- Multiple scattering improves the estimation of directions of arrival when the two scatterers are in far-field and well resolved
- When natural multiple scattering is weak, an artificial scatterer can be introduced to

