
• 𝑓0,𝑛 = 𝒩(0,1), 𝑓1,𝑛 = 𝒩 𝜇𝑛, 1 and 𝜖𝑛 = 𝑛−𝛽, 𝛽 ∈ 0,1

• {(𝜖𝑛, 𝜇𝑛)} conditions for consistency [2,3,4,5]

• Adaptive testing (without rate guarantees) [2,3,4,5,6] (Different tests have very different power [4,7])

•LB for PFA(n) via LB on LLR(𝑛) + Modified Cramer’s Theorem
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Rate Analysis For the LRT

Detecting Sparse Mixtures

• Test between pure noise and sparse 

signal in noise

• Sparse signal in noise modeled as mixture 

between noise and signal PDF

• Study trade-off between signal strength, 

sparsity and sample size

• Applications: Sensor Networks, Disease 

Outbreak Monitoring, Astrophysics, 

Bioinformatics, Covert Signaling [2,8-11]

• Initially studied with unit variance 

Gaussian noise and signal 

• Three Questions:

1. When are there consistent tests?

2. What are the best rates for 

consistent tests?

3. Are there adaptive tests (i.e. 

unknown signal and noise) with 

best rate?
Conclusions and Future Work

• Analyzed rates for oracle LRT for general 

sparse mixtures 

• Sublinear rate with non-KL divergence

• Future Work: Design adaptive tests with 

oracle rate for GLM and other mixture 

models

Gaussian Location Model (GLM)

• Test between:

𝐻0,𝑛: 𝑋1, … 𝑋𝑛 ∼ 𝑓0,𝑛(𝑥)
𝐻1,𝑛: 𝑋1, …𝑋𝑛 ∼ 1 − 𝜖𝑛 𝑓0,𝑛 𝑥 + 𝜖𝑛𝑓1,𝑛(𝑥)

• 𝑓0,𝑛 𝑥 , {𝑓1,𝑛 𝑥 } sequence of PDFs; 

𝐿𝑛 𝑥 =
𝑓1,𝑛(𝑥)

𝑓0,𝑛(𝑥)

• 𝜖𝑛 → 0, 𝑛 𝜖𝑛 → ∞

• LLR 𝑛 =  𝑖=1
𝑛 log 1 − 𝜖𝑛 + 𝜖𝑛𝐿𝑛 𝑥𝑖

• Analyze rate and consistency of oracle 

LRT:

• 𝛿𝑛 𝑥1, … , 𝑥𝑛 =  
1 LLR(𝑛) ≥ 0

0 LLR 𝑛 < 0

• False Alarm: PFA(𝑛) = P0[𝛿𝑛 = 1]
• Miss Detection: PMD(𝑛) = P1[𝛿𝑛 = 0]
• Consistency: PFA 𝑛 , PMD 𝑛 → 0 as 𝑛 → ∞
• Prior work [2,3,4,5,6] focuses on 

consistency and adaptivity, not rate

Mathematical Model

Numerical Results (GLM)

• 𝜖𝑛 = 𝑛−0.6, 𝜇𝑛 = 2 0.19 log 𝑛 (Sparse, 

Weak)

• Best fit slope with 𝑛 ≥
100000:−0.108 FA,MD

•Theoretical prediction: −
1

8
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• Rates of consistency: How quickly do error probabilities tend to zero?

• Rate Characterization: lim
𝑛→∞

log PFA 𝑛

𝑔0(𝑛)
= −𝑐. lim

𝑛→∞

log PMD 𝑛

𝑔1(𝑛)
= −𝑑

where 𝑐, 𝑑 > 0 and 𝑔0 n , 𝑔1 𝑛 → ∞
• Classic i.i.d. Hypothesis Testing: 𝑔0 𝑛 = 𝑔1 𝑛 = 𝑛, error exponents (KL 

divergence); Sublinear g0 n , 𝑔1 𝑛 in this work

• Rate Characterization for LRT:

• Weak signals characterized by χ2-divergence 

• Proof: Chernoff (UB), Mod. Cramer’s Theorem w. n-dependent tilting (LB)

• Strong signal rate is independent of divergence (beyond condition)

• Proof: Chernoff (UB), Universal liminf
𝑛→∞

log PMD(𝑛)

𝑛𝜖𝑛
≥ −1 (typicality LB) 

Weak Signals: Assume that for all 0 < 𝛾 < 𝛾0 where 𝛾0 ∈ 0,1 :

1. lim
𝑛→∞

E0
𝐿𝑛−1

2

𝐷𝑛
2 ; 𝐿𝑛 ≥ 1 +

𝛾

𝜖𝑛
= 0

2. 𝜖𝑛𝐷𝑛 → 0, 𝑛 𝜖𝑛
2𝐷𝑛

2 → ∞
Where 𝐷𝑛

2 = E0 𝐿𝑛 − 1 2 < ∞ is the χ2-divergence between 𝑓0,𝑛, 𝑓1,𝑛.

Then, lim
𝑛→∞

log PFA(𝑛)

𝑛𝜖𝑛
2𝐷𝑛

2 = lim
𝑛→∞

log PMD(𝑛)

𝑛𝜖𝑛
2𝐷𝑛

2 =−
1
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Strong Signals: If for all 𝑀 sufficiently large, lim
𝑛→∞

E0 𝐿𝑛; 𝐿𝑛 ≥ 1 +
𝑀

𝜖𝑛
= 1, 

then lim
𝑛→∞

log PFA(𝑛)

𝑛𝜖𝑛
≤ −1 , lim

𝑛→∞

log PMD(𝑛)

𝑛𝜖𝑛
=− 1

Conditions for consistency [2,3,4,5]:

1. (Dense) If 0 < 𝛽 <
1

2
, 𝜇𝑐𝑟𝑖𝑡,𝑛 = 𝑛𝛽−

1

2

2. (Moderately Sparse ) If 
1

2
< 𝛽 <

3

4
, 𝜇𝑐𝑟𝑖𝑡,𝑛 = 2(𝛽 −

1

2
) log 𝑛

3. (Very Sparse) If 
3

4
< 𝛽 < 1, 𝜇𝑐𝑟𝑖𝑡,𝑛 = 2 1 − 1 − 𝛽

2
log 𝑛

If 𝜇𝑛 < 𝜇𝑐𝑟𝑖𝑡,𝑛, 𝑃𝐹𝐴 + 𝑃𝑀𝐷 → 1 (Detection is impossible)

Rate Characterization for GLM: 

Weak Signals (Green): If 𝜇𝑐𝑟𝑖𝑡,𝑛 < 𝜇𝑛 <
2𝛽

3
log 𝑛, 

lim
𝑛→∞

log PFA(𝑛)

𝑛𝜖𝑛
2(𝑒𝜇𝑛

2
−1)

= lim
𝑛→∞

log PMD(𝑛)

𝑛𝜖𝑛
2(𝑒𝜇𝑛

2
−1)

=−
1
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Strong Signals (Blue): If 𝜇𝑛 > 2𝛽 log 𝑛 , lim
𝑛→∞

log PMD(𝑛)

𝑛𝜖𝑛
=− 1.

Furthermore, if 
𝑛𝜖𝑛

𝜇𝑛
2 → ∞, lim

𝑛→∞

log PFA(𝑛)

𝑛𝜖𝑛
= −1


