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Introduction – The Unmixing Problem

• We often encounter signals that are superpositions of two (or more) 
components. This happens in image processing, audio processing, etc.

• The problem of separating out the components of a signal from 
measurements is called the Unmixing Problem, or Demixing Problem

McCoy, Michael B., et al. "Convexity in source separation: Models, geometry, and algorithms." IEEE Signal Processing Magazine 31.3 (2014): 87-95. 2



Introduction – The Unmixing Problem

• Some related problems:
• Morphological Components Analysis

• Robust PCA – separation of a signal into a low rank and sparse component

Candès, Emmanuel J., et al. "Robust principal component analysis?." Journal of the ACM (JACM)58.3 (2011): 11. 3



Unmixing Problem - Formulation

• More formally, we have a signal 𝒛 = 𝒖 + 𝒗 that we would like to 
separate into its constituent parts.

• This is ill posed in general. We usually make the assumption that the 
constituent signals 𝒖, 𝒗 ∈ ℝ𝑁 have sparse representations in 
dictionaries (𝚿,𝚽) that are mutually incoherent.

𝒛 = 𝚽𝒙 +𝚿𝒚

• Mutual coherence for two dictionaries is defined as:
𝜇 = max

𝒙 =1, 𝒚 =1
| 𝚽𝒙,𝚿𝒚 |

The dictionaries are said to be incoherent if their mutual coherence is 
small.
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Unmixing Problem - Formulation

• In addition to the fact that the signals are superposed, we only have 
access to nonlinear, compressive measurements of the superposition

𝒚 = ℎ 𝑨 𝒖 + 𝒗 + 𝒆

• 𝑨 ∈ ℝ𝑚×𝑁 is a sensing matrix with 𝑚 ≪ 𝑁, 

• ℎ:ℝ → ℝ is a smooth, monotonic, nonlinear operator that is applied 
component-wise.

• Our goal is to recover 𝒖, 𝒗 from the measurements 𝒚
• We assume that we know the dictionaries 𝚽 and 𝚿 in which 𝒖 and 𝒗 are 

respectively sparse
• We also assume that the sensing matrix and nonlinear operator are known

5



Unmixing Matching Pursuit (UnmixMP)

• We solve the following optimization problem to unmix the desired signals:

min
𝒖,𝒗

𝑓 𝒖, 𝒗 =
1

𝑚
෍

𝑗=1

𝑚

Γ 𝒂𝑗
𝑇 𝒖 + 𝒗 − 𝒚𝑗𝒂𝑗

𝑇 𝒖 + 𝒗

s.t. 𝒖 𝟎,𝚽 ≤ 𝑘, 𝒗 𝟎,𝚿 ≤ 𝑠

• Here Γ 𝑡 = ∞−׬
𝑡
ℎ 𝑧 𝑑𝑧, is the integral of the nonlinear link function.

• 𝒖 𝟎,𝚽 and 𝒗 𝟎,𝚿 are the sparsity levels of the signals in their respective 
dictionaries.

• The objective 𝑓 𝒖, 𝒗 1 is different from the usual squared loss function that 
is usually considered in signal estimation problems. A similar objective was 
considered in [1]

[1] Soltani, Mohammadreza, and Chinmay Hegde. "Fast algorithms for demixing sparse signals from nonlinear observations." arXiv preprint arXiv:1608.01234 (2016). 6



UnmixMP Algorithm

Input:  Observations 𝒚, sensing matrix 𝑨, dictionaries 𝚽 and 𝚿, 

Nonlinear operator ℎ, stopping criterion.

Output: Unmixed signals 𝒖 and 𝒗

Initialization: 𝑡 = 0, Ω𝑢
0 = Ω𝑣

0 = ∅, 𝒖0, 𝒗0 = 𝟎

while not converged:

1 𝒈 = 1

𝑚
𝑨𝑇(ℎ 𝑨𝒖𝑡+𝑨𝒗𝑡 −𝒚)

2 Selection Step 𝑖𝑢 = argmin Proj𝚽𝒈 2, 𝑖𝑣 = argmin Proj𝚿𝒈 2

3 Ω𝑢
𝑡+1 = Ω𝑢

𝑡 ∪ 𝑖𝑢 , Ω𝑣
𝑡+1 = Ω𝑣

𝑡 ∪ 𝑖𝑣
4 (Update Step) (𝒖𝑡+1, 𝒗𝑡+1) = argmin 𝑓(𝒖,𝒗)

s.t. 𝒖 ∈ span 𝚽Ω𝑢
𝑡+1 , 𝒗 ∈ span 𝚿Ω𝑣

𝑡+1

5 𝑡 = 𝑡 + 1
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Theoretical Guarantees for UnmixMP

Definition – (𝒌, 𝒔) Restricted Strong Convexity / Restricted Strong 
Smoothness

A function 𝑓 is (𝒌, 𝒔)-RSC/RSS with parameters 𝑚𝑘,𝑠 and 𝑀𝑘,𝑠 if 
𝑚𝑘,𝑠 ෥𝒖 − 𝒖 2

2 + ෥𝒗 − 𝒗 2
2

≤ 𝑓 ෥𝒖, ෥𝒗 − 𝑓 𝒖, 𝒗 − ∇𝒖𝑓 𝒖, 𝒗 , ෥𝒖 − 𝒖 − ∇𝒗𝑓 𝒖, 𝒗 , ෥𝒗 − 𝒗
≤ 𝑀𝑘,𝑠 ෥𝒖 − 𝒖 2

2 + ෥𝒗 − 𝒗 2
2

for all 𝒖, ෥𝒖 ∈ 𝓢𝑘
𝒖 and 𝒗, ෥𝒗 ∈ 𝓢𝑠

𝒗.

Here 𝓢𝑘
𝒖 (𝓢𝑠

𝒗) are unions of subspaces spanned by all subsets of 
columns of 𝚽 (𝚿) of size 𝑘 (𝑠)
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Theoretical Guarantees for UnmixMP

Theorem 1 (Convergence of UnmixMP).

Suppose 𝑓 is (𝒌, 𝒔)-RSC/RSS with parameters 𝑚𝑘,𝑠 and 𝑀𝑘,𝑠. Let (𝒖∗, 𝒗∗) 
be optimal solution of our optimization problem. Then under some mild 
condition on 𝑚𝑘,𝑠 and 𝑀𝑘,𝑠, the following holds:
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𝒖𝑡+1 − 𝒖∗
2
+ 𝒗𝑡+1 − 𝒗∗

2
≤ 𝜂𝑡 𝒖0 − 𝒖∗

2
+ 𝒗0 − 𝒗∗

2
+ 𝐶

with convergence rate 𝜂 < 1. Here, 𝐶 is a small quantity depending on 
the sparsities of the optimal signals (𝒖∗, 𝒗∗), 𝑚 (the number of 
measurements), and the noise level.



Theoretical Guarantees for UnmixMP

Theorem 2 (Sample complexity).

Let the elements of 𝑨 ∈ ℝ𝑚×𝑁be drawn from a zero mean Gaussian 
distribution. Assume that the absolute value of the derivative of ℎ is 
bounded and the constituent dictionaries 𝚽 and 𝚿 are sufficiently 
mutually incoherent. 

If the number of measurements 𝑚 = 𝒪 (𝑠 + 𝑘) log 𝑁

𝑠+𝑘
, the 

assumptions of Theorem 1 hold with high probability.
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Experimental Results – Signal Model

• We generate signals 𝒖 and 𝒗 which are 𝑠-sparse in the DCT and 
identity dictionaries, respectively. We then generate nonlinear 
compressive measurements 𝒚 according to:

𝒚 = ℎ 𝑨 𝒖 + 𝒗

• The sensing matrix 𝑨 is a random Gaussian matrix. We experiment 
with two different choices for the nonlinear operator ℎ – the sigmoid 
function and the ReLU function.

ℎ 𝑥 =
1

1 + 𝑒−𝑥

ℎ 𝑥 = max(0, 𝑥)
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Experimental Results – Signal Model
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Experimental Results

• We compare the performance of UnmixMP to another algorithm that 
uses a similar framework – DHT [1] (Demixing with Hard 
Thresholding).

• We recover the unmixed signals ෝ𝒖 and ෝ𝒗 using UnmixMP and DHT, 
and measure their quality using normalized ℓ2 error.

13[1] Soltani, Mohammadreza, and Chinmay Hegde. "Fast algorithms for demixing sparse signals from nonlinear observations." arXiv preprint arXiv:1608.01234 (2016).



Experimental Results – Sigmoid Nonlinearity
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Experimental Results – ReLU Nonlinearity
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Conclusions

• We propose UnmixMP, a new greedy pursuit algorithm to separate 
signals from nonlinear, compressive measurements.

• We prove that UnmixMP converges linearly to the optimal solution, 
and also derive bounds on its sample complexity.

• We support these theoretical results with experimental validation, 
and improve upon results using DHT (Demixing with Hard 
Thresholding).

• Even though our convergence results require the nonlinear function 
to be smooth, we are still able to recover signals from non-smooth 
measurements like ReLU.
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