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Signal Mixture Model Main Result

Signal zg € R" is a mixture of xg,yg € R
Zp = Xp t+ Yo-

1. lmage feature decomposition, image denoising, signal separation;
2. How to formulate a proper demixing model?
3. What is the theorectical performance guarantee of the model?

Low subspace coherence High subspace coherence

Model Formulation Theorem 1. Exactness of (P)
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Suppose Assumption 1 hold and set A = log 7

. D . . . . . _
Sparse signal components: orthonormal basis W, » € R"*" in (P). Then (xo, yo) is the unique minimize:

of (P) with probability at least 1 — VG, provided that for all j € [n]
0y .= Wxy, 6y:=bdygy. card(fy),card(0y) K n.

1—p; > Coul(X, 'loczn, 4
Convex Optimization Model: for some A > 0 P oH (X, @j)log (4)

where (g is a universal positive constant.

min |[|Wx||1 + A||Pyl|q, s.t. x+y = zp.
X,yeR”

e essentially, IP)(qu ¢ Y) o< u(X, ij)i

1. Seek for feasible decomposition with minimum #; norm (convex); e makes X, be incoherent and hence distinguishable
C , C C .

2. When is (P) exact, e, (xg,yg) be its unique solution pair?

: _— lllustrative Examples
Review of Existing Work ustrattve Lxdamj

Example 1: W =F, & =1.
e Coherence pattern: [(1;, ¢;)| = \Lﬁ;
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Separability relies on the coherence between W, ®:
Mutual Coherence [1]: p(W, ®) := max|(¢;, @)|.

Let supp(Bx) be fixed and supp(8,) be unitormly random. Then (P) is exact w.h.p provided
that card(@x) + card(8y) < O (1/;/2(“1, ®) log® n). Ecard(8y) + card(fx) < O(—4—).

log* n

card(8y)
n

e local subspace coherence p(X, @) = \/

e In general, p € [% 1]; Example 2: W ="H, b = F.

_ k() +k()—k(D)]
e Mutual coherence barrier: p(W, ®) = 1. e Coherence pattern: [(¢;, ¢j)| < 2 22

i n . 2V2 i
Cluster Coherence [2]: u(Wq, ®) := max ZEQ |{4);, ¢/>| e local subspace coherence Zj:1 H(X, ¢j) < Tcalcl(HX),

3 . . . _ . . _ . _ _ _ .
(P) is exact. in the asymptotic regime (i.e., for all j — n) near perfectly provided that the Ecard(8,) + card(6y) < O(locnz n).
corresponding cluster coherence vanishes. J

e Characterize asymptotic exactness;

e We want a quantative local exactness condition. N U n‘|e|‘ical Expel‘.[n’]ent

‘<U°

Ex. 2 with Sy uniform Ex. 2 with Sy adaptive

Local Subspace Coherence

Assumption 1.

The signal components xq, yg satisty:

1. supp(6x) is fixed, while supp(6y) satisties P(j € supp(8y)) ~ Bernoulli(p);
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2.sgn(By),sgn(0) take values from {41, —1} with equal probability. 0 5 10 15 20 2530 35 40 45 50 55 60(%) |Sx| 0 5 10 15 20 25 30 35 40 45 50 55 60(%) ISkl

Fig. 2: Comparison of success region between (a) 6, be uniformly at random and

S | Sul (b) 8, be adapted to local subspace coherence.
ignal Subspace:

X :=span{vj, j € supp(Ox)}, Y :=span{e;,j € supp(8y)}.
e xg € X, and yg € V; Py, B projections.

Definition 1. Local Subspace Coherence
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o For X := @)_, X}, it holds that p?(X, @) = Y s 12 (XL, &)).




