Demixing Sparse Signals via Convex Optimization

Yi Zhou*, Yingbin Liang* *Department of EECS, Syracuse University

(P)

 $\theta_X := \Psi \mathbf{x}_0, \quad \theta_U := \Phi \mathbf{y}_0. \quad \operatorname{card}(\theta_X), \operatorname{card}(\theta_U) \ll n.$

Convex Optimization Model: for some $\lambda > 0$

 $\min_{\mathbf{x},\mathbf{y}\in\mathbb{R}^n} ||\Psi\mathbf{x}||_1 + \lambda ||\Phi\mathbf{y}||_1, \quad \text{s.t.} \quad \mathbf{x} + \mathbf{y} = \mathbf{z}_0.$

1. Seek for feasible decomposition with minimum ℓ_1 norm (convex); 2. When is (P) exact, i.e., $(\mathbf{x}_0, \mathbf{y}_0)$ be its unique solution pair?

Review of Existing Work

Separability relies on the coherence between Ψ , Φ :

Mutual Coherence [1]: $\mu(\Psi, \Phi) := \max_{i=1}^{\infty} |\langle \psi_i, \phi_j \rangle|$.

Let supp(θ_{χ}) be fixed and supp(θ_{η}) be uniformly random. Then (P) is exact w.h.p provided that $\operatorname{card}(\boldsymbol{\theta}_{\chi}) + \operatorname{card}(\boldsymbol{\theta}_{y}) \leq \mathcal{O}\left(1/\mu^{2}(\Psi, \Phi)\log^{6} n\right).$

• In general, $\mu \in [\frac{1}{\sqrt{n}}, 1];$

• Mutual coherence barrier: $\mu(\Psi, \Phi) = 1$.

Cluster Coherence [2]: $\mu(\Psi_{\Omega}, \Phi) := \max \sum_{i \in \Omega} |\langle \psi_i, \overline{\phi_j} \rangle|.$

(P) is exact in the asymptotic regime (i.e., for all $j \rightarrow n$) near perfectly provided that the corresponding cluster coherence vanishes.

of (P) with probability at least $1 - n^{-\sqrt{C_0}}$, provided that for all $j \in [n]$

 $1 - p_i \ge C_0 \mu(\mathcal{X}, \phi_i) \log^2 n,$

(4)

(5)

(6)

where C_0 is a universal positive constant.

• essentially, $\mathbb{P}(\phi_i \notin \mathcal{Y}) \propto \mu(\mathcal{X}, \phi_i)$; • makes \mathcal{X}, \mathcal{Y} be incoherent and hence distinguishable.

Illustrative Examples

Example 1: $\Psi = \mathcal{F}, \Phi = \mathcal{I}.$ • Coherence pattern: $|\langle \psi_i, \phi_j \rangle| = \frac{1}{\sqrt{n}};$ • local subspace coherence $\mu(\mathcal{X}, \phi_j) \equiv \sqrt{\frac{\operatorname{card}(\theta_x)}{n}}$, \mathbb{E} card (θ_{y}) + card $(\theta_{x}) \leq \mathcal{O}(\frac{n}{\log^{4} n}).$ Example 2: $\Psi = \mathcal{H}, \Phi = \mathcal{F}.$ • Coherence pattern: $|\langle \psi_i, \phi_j \rangle| \leq 2^{-\frac{\kappa(j)+|\kappa(j)-\kappa(i)|}{2}}$.; • local subspace coherence $\sum_{j=1}^{n} \mu(\mathcal{X}, \phi_j) \leq \frac{2\sqrt{2}}{\sqrt{2}-1} \operatorname{card}(\theta_x)$,

 \mathbb{E} card (θ_{y}) + card $(\theta_{x}) \leq \mathcal{O}(\frac{n}{\log^{2} n}).$

- Characterize asymptotic exactness;
- We want a quantative local exactness condition.

Local Subspace Coherence

Assumption 1.

The signal components x_0 , y_0 satisfy: 1. supp(θ_X) is fixed, while supp(θ_U) satisfies $\mathbb{P}(j \in \text{supp}(\theta_U)) \sim \text{Bernoulli}(p_j)$; 2. sgn(θ_x), sgn(θ_y) take values from {+1, -1} with equal probability.

Signal Subspace:

 $\mathcal{X} := \operatorname{span}\{\psi_j, j \in \operatorname{supp}(\theta_{\chi})\}, \quad \mathcal{Y} := \operatorname{span}\{\phi_j, j \in \operatorname{supp}(\theta_{\eta})\}.$

(2)

• $\mathbf{x}_0 \in \mathcal{X}$, and $\mathbf{y}_0 \in \mathcal{Y}$; $P_{\mathcal{X}}$, $P_{\mathcal{Y}}$ projections.

Definition 1. Local Subspace Coherence

The local subspace coherence between basis vectors $\{\phi_i\}_i$ and the subspace \mathcal{X} is

 $\mu(\mathcal{X}, \phi_j) := ||\mathsf{P}_{\mathcal{X}}\phi_j||_2, \quad \forall j \in [n].$ (3)

• Measures how aligned is ϕ_i with subspace \mathcal{X} ;

• For $\mathcal{X} := \bigoplus_{l=1}^{p} \mathcal{X}_{l}$, it holds that $\mu^{2}(\mathcal{X}, \phi_{j}) = \sum_{l=1}^{p} \mu^{2}(\mathcal{X}_{l}, \phi_{j})$.

Numerical Experiment

Fig. 2: Comparison of success region between (a) θ_{ij} be uniformly at random and (b) θ_{u} be adapted to local subspace coherence.

References

[1] E. J. Candès and J. Romberg. Quantitative robust uncertainty principles and optimally sparse decompositions. *Foundations of Computational Mathematics*, 6(2):227–254, 2006. [2] D. L. Donoho and G. Kutyniok. Microlocal analysis of the geometric separation problem. *Communications on Pure and Applied Mathematics*, 66(1):1–47, 2013.

