Variable Span Filtering for Speech Enhancement

ICASSP, 20-25 March 2016

Jesper Rindom Jensen^{*,1}, Jacob Benesty^{1,2}, and Mads Græsbøll Christensen¹

*jrj@create.aau.dk

¹Audio Analysis Lab, AD:MT Aalborg University Denmark ²INRS-EMT University of Quebec Canada

Partly funded by the Danish Council for Independent Research, grant ID: DFF - 1337-00084, and the Villum Foundation.

Introduction

Signal Model and Problem Formulation

Joint Diagonalization

Filtering

Performance

Optimal Filter Designs

Experimental Results

Conclusions

- Noise reduction/enhancement is essential in many multichannel applications, such as hearing-aids.
- ► Have been tackled using many methods, e.g., linear filtering, spectral subtractive, and subspace methods.
- We propose a new class of methods that combines the linear filtering and subspace approaches.
- ► This is achieved by designing filters using a joint diagonalization.
- These variable span filters give explicit control over noise reduction versus signal distortion.

Signal Model

Model:

M sensors captures a convolved source signal and noise:

$$y_m(t) = g_m(t) * s(t) + v_m(t) = x_m(t) + v_m(t),$$
(1)

m = 1, ..., M, where

- g_m: m'th acoustic impulse response,
 - s: desired source,
- *v_m*: noise captured by sensor *m*,

Problem Formulation

Goal

Extract x_1 from y_m , m = 1, ..., M with little/no distortion and residual noise using optimal filters.

A few assumptions to facilitate the task:

- 1. *x_m* and *v_m* uncorrelated, zero mean, stationary, real and broadband,
- 2. sensor signals are aligned wrt. the source direction.

Frequency Domain Model

Using the STFT, we get:

$$Y_m(k,n) = X_m(k,n) + V_m(k,n),$$
 (2)

AND NEW

m = 1,..., *M*, where *k* & *n*: frequency and time indices, *Y*, *X*, *V*: STFTs of *y*, *x* and *v* at *k*'th frequency.

In vector format:

$$\mathbf{y}(k,n) = \begin{bmatrix} Y_1(k,n) & Y_2(k,n) & \cdots & Y_M(k,n) \end{bmatrix}^T$$
(3)
= $\mathbf{x}(k,n) + \mathbf{v}(k,n).$ (4)

Common assumption:

$$X_m(k,n) = G_m(k)S(k,n), m = 1, 2, \dots, M,$$
 (5)

where G_m and S are STFTs of g_m and s.

Observation:

- ▶ only valid with inf. long windows $N_{win} \rightarrow \infty$ or periodic sources,
- window length limited in practice,
- leads to rank($\Phi_{\mathbf{x}}(k, n)$) = P > 1,
- not accounted for in conventional methods.

Interframe Correlation

Successive time frames (N) taken into account:

$$\underline{\mathbf{y}}(k,n) = \begin{bmatrix} \mathbf{y}^{\mathsf{T}}(k,n) & \mathbf{y}^{\mathsf{T}}(k,n-1) & \cdots & \mathbf{y}^{\mathsf{T}}(k,n-N+1) \end{bmatrix}^{\mathsf{T}}$$
(6)
= $\underline{\mathbf{x}}(k,n) + \underline{\mathbf{v}}(k,n).$ (7)

Correlation matrix of $\mathbf{y}(k, n)$:

$$\Phi_{\underline{\mathbf{y}}}(k,n) = \mathsf{E}\left[\underline{\mathbf{y}}(k,n)\underline{\mathbf{y}}^{H}(k,n)\right] \tag{8}$$

$$= \mathbf{\Phi}_{\underline{\mathbf{x}}}(k,n) + \mathbf{\Phi}_{\underline{\mathbf{v}}}(k,n), \tag{9}$$

where

 $\Phi_{\underline{x}}(k, n)$: correlation matrix of \underline{x} of rank P < MN, $\Phi_{\underline{v}}(k, n)$: correlation matrix of \underline{v} of rank MN.

Joint Diagonalization

Arone UNIVERS

Joint diagonalization of correlation matrices:

$$\mathbf{B}^{H}(k,n)\mathbf{\Phi}_{\underline{\mathbf{x}}}(k,n)\mathbf{B}(k,n) = \mathbf{\Lambda}(k,n), \tag{10}$$

$$\mathbf{B}^{H}(k,n)\mathbf{\Phi}_{\underline{\mathbf{v}}}(k,n)\mathbf{B}(k,n) = \mathbf{I}_{MN},$$
(11)

where

- **B**: full rank, $MN \times MN$ matrix,
- A: diagonal matrix with P real, positive entries (sorted),
- I_{MN} : identity matrix with dimensions $MN \times MN$.

 $\boldsymbol{\Lambda}$ and \boldsymbol{B} are eigenvalue and -vector matrices of $\boldsymbol{\Phi}_{\boldsymbol{v}}^{-1}\boldsymbol{\Phi}_{\underline{\boldsymbol{x}}},$ i.e.,

$$\mathbf{\Phi}_{\underline{\mathbf{v}}}^{-1}(k,n)\mathbf{\Phi}_{\underline{\mathbf{x}}}(k,n)\mathbf{B}(k,n) = \mathbf{B}(k,n)\mathbf{\Lambda}(k,n).$$
(12)

$$Z(k,n) = \underline{\mathbf{h}}^{H}(k,n)\underline{\mathbf{y}}(k,n), \qquad (13)$$

BREAK

where

$$\underline{\mathbf{h}}(k,n) = \begin{bmatrix} \mathbf{h}^{T}(k,n) & \mathbf{h}^{T}(k,n-1) & \cdots & \mathbf{h}^{T}(k,n-N+1) \end{bmatrix}^{T}.$$
 (14)

With **B** as basis, the filter is

$$\underline{\mathbf{h}}(k,n) = \mathbf{B}(k,n)\underline{\mathbf{a}}(k,n), \tag{15}$$

where **<u>a</u>** is a filter in **B**, and

$$\underline{\mathbf{a}}(k,n) = \begin{bmatrix} A_1(k,n) & \cdots & A_{MN}(k,n) \end{bmatrix}^T.$$
(16)

Using \underline{a} , the signal estimate is

$$Z(k,n) = \underline{\mathbf{a}}^{H}(k,n)\mathbf{B}^{H}(k,n)\underline{\mathbf{x}}(k,n) + \underline{\mathbf{a}}^{H}(k,n)\mathbf{B}^{H}\underline{\mathbf{v}}(k,n)$$
(17)
= $X_{\text{fd}}(k,n) + V_{\text{rn}}(k,n).$ (18)

Variance of Z:

$$\phi_{Z}(k,n) = \underline{\mathbf{a}}^{H}(k,n)\mathbf{\Lambda}(k,n)\underline{\mathbf{a}}(k,n) + \underline{\mathbf{a}}^{H}(k,n)\underline{\mathbf{a}}(k,n)$$
(19)
= $\phi_{X_{1,\text{id}}}(k,n) + \phi_{V_{1,\text{rm}}}(k,n)$ (20)

Output SNR:

$$\text{oSNR}[\underline{\mathbf{h}}(k,n)] = \frac{\phi_{X_{1,\text{fd}}}(k,n)}{\phi_{V_{1,\text{fn}}}(k,n)} = \frac{\underline{\mathbf{a}}^{H}(k,n)\mathbf{\Lambda}(k,n)\underline{\mathbf{a}}(k,n)}{\underline{\mathbf{a}}^{H}(k,n)\underline{\mathbf{a}}(k,n)}$$
(21)

Signal reduction factor:

$$\xi_{\rm sr}[\underline{\mathbf{h}}(k,n)] = \frac{\phi_{X_1}(k,n)}{\phi_{X_{1,\rm fd}}(k,n)} = \frac{\phi_{X_1}(k,n)}{\underline{\mathbf{a}}^H(k,n)\mathbf{\Lambda}(k,n)\underline{\mathbf{a}}(k,n)}$$
(22)

Mean Squared Error

Error given by $\mathcal{E}(k, n) = Z(k, n) - X_1(k, n)$, leads to MSE

$$J[\mathbf{a}'(k,n)] = E\left[|\mathcal{E}(k,n)|^2\right] = \underbrace{J_{ds}\left[\mathbf{a}'(k,n)\right]}_{\text{distortion MSE}} + \underbrace{J_{rs}\left[\mathbf{a}'(k,n)\right]}_{\text{residual noise MSE}},$$

where

$$J_{ds} \left[\mathbf{a}'(k,n) \right] = E \left[\left| X_1(k,n) - \mathbf{a}'^H(k,n) \mathbf{B}'^H(k,n) \underline{\mathbf{x}}(k,n) \right|^2 \right]$$
(23)
$$J_{rs} \left[\mathbf{a}'(k,n) \right] = E \left[\left| \mathbf{a}'^H(k,n) \mathbf{B}'^H(k,n) \underline{\mathbf{v}}(k,n) \right|^2 \right].$$
(24)

$$\min_{\mathbf{a}'} \ J_{ds}[\mathbf{a}'(k,n)] \quad \text{s.t.} \quad J_{rs}[\mathbf{a}'(k,n)] = \beta \phi_{V_1}(k,n), \tag{25}$$

where $0 \le \beta \le 1$ controls the level of noise reduction.

Tradeoff filter design:

$$\underline{\mathbf{h}}_{\mathrm{T},\mu}(k,n) = \sum_{\rho=1}^{P} \frac{\underline{\mathbf{b}}_{\rho}(k,n)\underline{\mathbf{b}}_{\rho}^{H}(k,n)}{\mu + \lambda_{\rho}(k,n)} \Phi_{\underline{\mathbf{x}}}(k,n)\underline{\mathbf{i}},$$
(26)

with μ a Lagrange multiplier adjusting noise level.

General Tradeoff Filter

Even more general filter obtained by using an arbitrary number of eigenvalues instead

$$\underline{\mathbf{h}}_{\mu,Q}(k,n) = \sum_{q=1}^{Q} \frac{\underline{\mathbf{b}}_{q}(k,n)\underline{\mathbf{b}}_{q}^{H}(k,n)}{\mu + \lambda_{q}(k,n)} \mathbf{\Phi}_{\underline{\mathbf{x}}}(k,n)\underline{\mathbf{i}}.$$
(27)

Observations:

- ▶ $\underline{\mathbf{h}}_{0,1}(k,n) = \underline{\mathbf{h}}_{\max}(k,n)$, (max SNR filter)
- $\underline{\mathbf{h}}_{1,P}(k,n) = \underline{\mathbf{h}}_{W}(k,n)$, (general Wiener filter)
- ▶ $\underline{\mathbf{h}}_{0,P}(k,n) = \underline{\mathbf{h}}_{\text{MVDR}}(k,n)$, (distortionless filter)
- ▶ $\underline{\mathbf{h}}_{0,Q}(k,n) = \underline{\mathbf{h}}_{MD}(k,n)$, (minimum distortion filter)

►
$$\underline{\mathbf{h}}_{\mu,P}(k,n) = \underline{\mathbf{h}}_{\mathsf{T},\mu}(k,n).$$

The statistics were estimated directly from the speech and noise signals, respectively.

It was conducted recursively using the following general equation for approximating the correlation matrix of a vector $\underline{\mathbf{a}}(k, n)$:

$$\widehat{\boldsymbol{\Phi}}_{\underline{a}}(k,n) = (1-\xi)\widehat{\boldsymbol{\Phi}}_{\underline{a}}(k,n-1) + \xi \underline{\boldsymbol{a}}(k,n)\underline{\boldsymbol{a}}(k,n)^{H}, \quad (28)$$

where ξ is a forgetting factor.

Forgetting factors for the signal and noise statistics estimation were chosen as $\xi_s = 0.05$ and $\xi_n = 0.05$, respectively.

Simulation Setup

- sensor distance: 5 cm
- ▶ sound speed: 343 m/s
- reverb time: 0.2 s
- ► RIR length: 2,048
- mic type: omnidirectional

Signals:

Desired: speech (2 female and 2 male),

Noise: diffusive (babble) + sensor noise (white).

Room layout:

Results Evaluation vs. filter length

Parameters:

- # of sensors: 3
- ► SDNR: 0 dB
- ► SSNR: 30 dB
- ▶ window length: 40
- ► FFT length: 64
- Assumed rank: 3

Results Evaluation vs. filter rank

Parameters:

- # of sensors: 3
- ► SDNR: 0 dB
- ► SSNR: 30 dB
- ▶ window length: 40
- ► FFT length: 64
- ► Filter length: 6

2EAA

18

Parameters: # of sensors: 3, SDNR: 0 dB, SSNR: 30 dB, window length: 40, FFT length: 64, filter length: 4.

Conclusions

- We considered the topic of multichannel speech enhancement.
- Proposed a new class of variable span filters (STFT domain).
- Unifies the filtering and subspace approaches.
- Provides explicit control over noise reduction versus signal distortion.
- Encompasses many well-known filter designs.
- Can outperform the traditional filtering counterparts according to experimental results (oSNR, PESQ, distortion).

