Variable Span Filtering for
Speech Enhancement

ICASSP, 20-25 March 2016

Jesper Rindom Jensen*!, Jacob Benesty'2,
and Mads Graesbgll Christensen’

*jrj@create.aau.dk

" Audio Analysis Lab, 2INRS-EMT
AD:MT University of Quebec
Aalborg University Canada
Denmark

Partly funded by the Danish Council for Independent Research, grant ID: DFF — 1337-00084, and the Villum Foundation.

«

AALBORG UNIVERSITY
DENMARK



mailto:jrj@create.aau.dk

J.R.Jensen et al. | jrjocreate.aau.dk | Variable Span Filtering for Speech Enhancement

Agenda

Introduction

Signal Model and Problem Formulation
Joint Diagonalization

Filtering

Performance

Optimal Filter Designs

Experimental Results

Conclusions




J.R.Jensenetal. | jrjecreate.aau.dk | Variable Span Filtering for Speech Enhancement

Introduction (((

» Noise reduction/enhancement is essential in many multichannel
applications, such as hearing-aids.

» Have been tackled using many methods, e.g., linear filtering,
spectral subtractive, and subspace methods.

» We propose a new class of methods that combines the linear
filtering and subspace approaches.

» This is achieved by designing filters using a joint diagonalization.

» These variable span filters give explicit control over noise
reduction versus signal distortion.
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Signal Model ((( &

Model:

M sensors captures a convolved source signal and noise:

Ym(t) = gm(t) * S(t) + Vim(t) = Xm(t) + Vim(2),

m=1,...,M, where
gm: m’'th acoustic impulse response,
s: desired source,
Vm: Noise captured by sensor m,
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Problem Formulation ((‘\

Goal
Extract x4 from y,,, m=1,..., M with little/no distortion and residual

noise using optimal filters.

A few assumptions to facilitate the task:

1. Xm, and v, uncorrelated, zero mean, stationary, real and
broadband,

2. sensor signals are aligned wrt. the source direction.
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Frequency Domain Model

Using the STFT, we get:

Ym(k, ) = Xm(k, 1) + Vim(k, 1),

m=1,..., M, where

k & n: frequency and time indices,
Y, X, V: STFTs of y, x and v at k’th frequency.

In vector format:

y(k,n) = [Yi(k,n) Ya(k,n) - Yu(k,n)]"

= X(k,n) +v(k,n).
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Observation ((‘ \

'75 ul\“t

9 BRE,
~<

Common assumption:

Xm(k,n) = Gm(K)S(k,n),m=1,2,.... M, (5)

where G, and S are STFTs of g, and s.
Observation:

» only valid with inf. long windows N, — oo or periodic sources,
» window length limited in practice,

» leads to rank(®x(k,n)) = P > 1,

» not accounted for in conventional methods.
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Interframe Correlation

Successive time frames (N) taken into account:

y(k.n)=[y"(k.n) yT(k.n—1) - yT(ken—N+1)]"  (6)
x(

®y(k,n) = E [y(k,n)y"(k, n)] (8)
= Oy (k, n) + dy(k, N) 9)
where
®y(k, n): correlation matrix of x of rank P < MN,

€

v(k, n): correlation matrix of v of rank MN.
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Joint Diagonalization
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Joint diagonalization of correlation matrices:
BH(kan)q)X(kan)B(kan) - l\(k?n)? (10)
B (k, n)®y(k, n)B(k, n) = ly, (11)

where
B: full rank, MN x MN matrix,
A: diagonal matrix with P real, positive entries (sorted),
lyn: identity matrix with dimensions MN x MN.

A and B are eigenvalue and -vector matrices of ®, '@y, i.e.,

®, ' (k,n)dy(k, n)B(k, n) = B(k, n)A(k, ). (12)
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Filtering

Desired signal X; estimated from y through filtering:

Z(k n) - hH(kv n)y(k~ n),

where
h(k,n) = [nT(k,n) hT(k,n—1)

With B as basis, the filter is

h(k,n—N+1)].

h(k, n) = B(k. n)a(k, n),

where a is a filter in B, and

Q(k n) - {A1 (k n)

AMN(k, I’I)] ’ .

(14)

(15)
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Filtering

Using a, the signal estimate is

Z(k,n) = a"(k,n)B"(k, n)x(k, n) +a"(k, n)B"v(k, n) (17)
= de(k., n) + Vin(k, n). (18)

Variance of Z:

bz(k,n) = a'(k, n)A(k, n)a(k, n) + a'(k, n)a(k, n) (19)
= G)Xud(ka n) + COVw,m(kv n) (20)



J.R.Jensen et al. | jrjocreate.aau.dk | Variable Span Filtering for Speech Enhancement

Performance

Output SNR:
_ oxuw(kin) _ a(k,n)A(k, n)a(k, n)
OSNRIN(MI= 5, tom ~  af(kmatkmy @Y
Signal reduction factor:
ealh(k, n)] = ox, (k,n) : ox, (k,n) (22)

G)de(kf n) QH(ka mA(k, na(k, n)
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Mean Squared Error ((‘}

Error given by £(k, n) = Z(k, n) — Xi(k, n), leads to MSE

J[a'(k.n)] = E [|5(k, n)ﬂ = Jus [@'(k. )|+ Jis [ (K. )]

distortion MSE residual noise MSE

where
Jus [@' (K, N)] [|x1 (k, n) — a™(k, m)B™(k, n)x(k, n)| } (23)
Js[a'(k,n)] = E [| a(k,m)B™(k, n)v(k, )| } . (24)
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Tradeoff Filter ((‘
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A general filter is obtained by solving:

rr;i/n Jos[@'(k,n)] st Js[@'(k,n)] = Bov, (k,n), (25)

where 0 < 8 < 1 controls the level of noise reduction.

Tradeoff filter design:

be;l(kv n) - L + )\p(ka n)

(K, n)i, (26)

with 1 a Lagrange multiplier adjusting noise level.
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General Tradeoff Filter

Even more general filter obtained by using an arbitrary number of
eigenvalues instead

9 b,(k, )b} (k,
h, o(k.n —ZM oy (K, n)i. 27)

g=1

Observations:
> hy (k,n) =hp,(k,n), (max SNRfilter)

» h, p(k,n) =hy(k,n), (general Wiener filter)

» hy p(k,n) =hyypr(k,n), (distortionless filter)

> hO aolk,n) = hMD(k, n),  (minimum distortion filter)
» h, p(k,n) =hy  (k n).
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Experimental Results

Estimation of statistics

o, @
Re univ®

The statistics were estimated directly from the speech and noise
signals, respectively.

It was conducted recursively using the following general equation for
approximating the correlation matrix of a vector a(k, n):

4k, n) = (1 = )®a(k,n— 1) +ca(k, ma(k,n)",  (28)
where ¢ is a forgetting factor.

Forgetting factors for the signal and noise statistics estimation were
chosen as & = 0.05 and &, = 0.05, respectively.
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Simulation Setup
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Parameters:

Room layout:
» sensor distance: 5 cm

» sound speed: 343 m/s
» reverbtime: 0.2 s

> RIR length: 2,048

» mic type: omnidirectional

4

Signals:

Desired: speech (2 female and 2
male),

Noise: diffusive (babble) + sensor ="
noise (white).
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Results ((‘
Evaluation vs. filter length >, g
Parameters:

» # of sensors: 3 _ ]

» SDNR: 0dB

» SSNR: 30 dB 0

» window length: 40

» FFT length: 64

» Assumed rank: 3

,Zz//

Filter length
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Results §
Evaluation vs. filter rank ’, ((‘ »\:

% v

Parameters:

» # of sensors: 3 g, \,\
SDNR: 0 dB

SSNR: 30 dB S ——

window length: 40 .

FFT length: 64
Filter length: 6

vV v .v. v Yy

2 3 4 s 6
Assumed signal subspace rank

MOS

Assumed signal subspace rank
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Examples

Parameters:
# of sensors: 3, SDNR: 0 dB, SSNR: 30 dB, window length: 40, FFT
length: 64, filter length: 4.

Clean Noisy Max.SNR Min. Dis. Wiener Trad. Wiener

0 0 ) ) @ 0
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Conclusions ((( L
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» We considered the topic of multichannel
speech enhancement.

» Proposed a new class of variable span

Springer Topics in Signal Processing

filters (STFT domain). lachGancetigl)
T . . Jesper R. Jensen
» Unifies the filtering and subspace S'P A :
approaches. |gna n ancemen
PP . L ) with Variable Span
» Provides explicit control over noise Linear Filters

reduction versus signal distortion.

» Encompasses many well-known filter
designs.

» Can outperform the traditional filtering

counterparts according to experimental
results (0SNR, PESQ, distortion).
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